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A case study

SATINDER CHOPRA, Core Lab Reservoir Technologies, Calgary, Canada
Doue Prupen, GEDCO, Calgary, Canada

Prospecting for reservoir zones in mature trends sometimes
requires unconventional exploration tools. AVO has been
successfully used as a direct hydrocarbon indicator in some
clastic rocks. Lately, AVO inversion for Lamé parameters (4p
and up) has been shown to enhance identification of reser-
voir zones. Furthermore, integration of AVO-derived attribute
volumes with other non-AVO-derived seismic attribute vol-
umes can provide meaningful geologic information when
tied back to well data and verified as correlating with rock
properties. This paper provides a case study of a 3D seismic
survey in southern Alberta, Canada, where a probabilistic
neural network solution was employed on AVO attributes.
The results were integrated with other seismic attributes to
develop a more comprehensive interpretation.

The target area is a Lower Cretaceous glauconite-filled
(cycles of shales and quartz sandstones) fluvial channel,
deposited within an incised valley system. A 3D seismic sur-
vey was acquired to create a stratigraphic model consistent
with all available well control and matching the production
history. The ultimate goal was to locate undeveloped poten-
tial within the gas sands. The field has been producing since
the early 1980s and two of the earliest, most prolific pro-
ducers have begun to water out.

As the objective was stratigraphic in nature, the seismic
data were processed with the objective of preserving rela-
tive amplitude relationships in the offset domain to allow
for AVO attribute analysis.

Time slice animation of the processed 3D migrated vol-
ume indicated the presence of a main valley cut in the north-
east corner of the survey. A Coherence Cube analysis of the
3D survey enhanced the channel features that were evident
on the well data. The data were datumed on an easily
mapped Upper Cretaceous marker to remove the distortions
of regional dip from time slices at the zone of interest. Figure
la shows a horizon slice through the coherence volume at
the reservoir level.

The complex trace envelope attribute is generally used
for mapping lithology changes. A composite volume con-
taining the envelope attribute superimposed on the coher-
ence data is shown in Figure 1b. High envelope values are
seen within the incised valley; however, they do not pro-
vide information that separates tight lithic sands from pro-
ductive glauconite sands.

Because this reservoir has been depleted by gas pro-
duction, high amplitude anomalies are not necessarily
indicative of significant gas accumulations. Only a minor
presence of gas is required within pore spaces to produce
significant seismic amplitude effects. It has been reported
(Diaz et al., 2001) that glauconitic sandstone reservoir rocks
can be delineated using Poisson’s ratio and AVO acoustic
impedance inversion analysis. The generation and calibra-
tion of synthetic seismograms with full-offset-stacked
migrated 3D data resulted in mis-ties, suggesting the pos-
sibility of AVO effects due to lithology and pore fluid fill.
The near-trace stack approximates a more normal incidence
model, as assumed in the synthetic seismograms, and
improves the well ties. From this analysis, it was deter-
mined that AVO inversion for Lamé rock parameters could
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Figure 1. (a) Horizon slice through the coherence volume at the level of
the reservoir. The definition of the main incised valley now seems quite
clear. (b) A composite volume containing the complex trace envelope
attribute (in color) as well as the coherence coefficients. High envelope
amplitudes are seen within the incised valley. However, although these
displays are quite revealing, they do not provide information that can
separate tight lithic sands from productive glauconite sands.

provide additional insight into the geologic complexity.

AVO inversion for Lamé rock parameters. Reservoir prop-
erties can be defined in terms of fundamental rock para-
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Figure 2. (a) Horizon slice from Lambda-Rho volume showing the suspected gas anomaly. Low values of Lambda-Rho are blue. (b) Horizon slice from
Mu-Rho volume showing the suspected gas anomaly. High values of Mu-Rho are yellow and red. (c) Lambda-Rho plotted against Mu-Rho. The yellow
points come from the yellow polygon which encloses the suspected anomaly in Figures 2a and 2b. The red points come from the red polygon that
encloses all live data points on the horizon slices. The plot shows that the yellow points correspond to low values of Lambda-Rho and high values of
Mu-Rho (as expected of a gas anomaly). (d) The points within the purple polygon represent low values of Lambda-Rho and high values of Mu-Rho.
These points are highlighted on Figures 2e and 2f, confirming the anomaly. (e) Horizon slice from Lambda-Rho volume highlighting the portions corre-
sponding to low values of Lambda-Rho and high values of Mu-Rho (purple polygon in Figure 2d). (f) Horizon slice from Mu-Rho volume highlighting
the portions corresponding to low values of Lambda-Rho and high values of Mu-Rho (purple polygon in Figure 2d).
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meters such as incompressibility and rigidity. Goodway et
al. (1997) suggested the use of Lambda-Mu-Rho analysis to
extract lithology and pore fluid information from seismic
and well log data. The basic theory for this analysis has been
discussed by Burianyk (2000), Goodway (2001), Ma (2001),
and Dufour et al. (2002).

P-wave and S-wave impedance reflectivity responses
were estimated by solving the Fatti simplification of the
Zoeppritz equations:

Al
R = l(1+ tan? 0)—= — 4 Vs | sinzolls
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where —— = P-wave impedance reflectivity
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S

= S-wave impedance reflectivity

S

The V/Vs ratio was estimated from dipole sonic log data
proximal to the area of study.

Impedance reflectivities are related to Lamé parameters
of incompressibility (1) and rigidity («) by the relationships
Ap =1,2- 212 and up = I where p is bulk density.

The Lamé parameters cannot be directly extracted with-
out an estimation of the density parameter p.

Inversion for geologic parameters. AVO inversion as
described above yields several seismic attribute volumes which
all contain fluid and lithological information. These volumes
are: density scaled compressibility, density scaled rigidity,
derived normal incidence P-wave stack, P impedance reflec-
tivity, S impedance reflectivity, and fluid factor stack.

Figures 2a and 2b show the Lambda-Rho and Mu-Rho sec-
tions with an anomaly enclosed in a yellow polygon. The
plots for these two attributes are also shown in Figures 2c and
2d. The yellow dots represent the values within the polygons
on Figures 2a and 2b, respectively. The red polygon in Figure
2d indicates where we would expect to find gas sands in
Lambda-Rho and Mu-Rho space. In addition to gas-sand iden-
tification, significant lithological information can be derived
from the data.

Multivariate statistical analysis can be used as an aid in
determining whether the derived property volumes are related
to gas saturation and lithology. Our approach examines the
relationship between variables to determine whether common
clusters or groupings will form that represent a particular
lithology or fluid fill. Figures 2c and 2d show a two-dimen-
sional example of this approach in which gas sands tend to
separate themselves in Lambda-Rho, Mu-Rho space (pink
polygon in Figure 2d). This approach becomes less intuitive
when more than three variables are considered simultaneously.
It is difficult to visualize n-dimensional cross-plot space if n
is greater than four even when color is used as a fourth dimen-
sional separator. It is within this n > 4 space that clustering or
separation of differing lithology and fluid fill may be most
evident.

Figure 3 is an example of the separation power of cluster
analysis. Within the zone of interest, the value for each of the
six variables has been subjected to a k-means cluster separa-
tion analysis, assuming that four distinct classes exist within
the data set. As can be seen in Figure 3, the cluster separation
has divided the data into separate zones, based on the com-
mon relationships between the variables.

This type of unsupervised cluster separation analysis is
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Figure 3. Lambda-Rho plotted against Mu-Rho with multiattribute clus-
ter classifications and posted values at wells within the study area.
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Figure 4. A subset of the 3D volume of the study area that has been sub-
jected to K-means cluster analysis. Note that the analysis appears to
reveal some lithological information, but the clusters have not yet been
subjected to classification according to the well control.

often capable of creating useful character mappings of the data
in 3D space by reducing a large number of attributes down
to one (assigned cluster) that can be visualized on a map. Figure
4 is a small subset of the larger 3D that has had this analysis
performed. Different clusters may tend to associate them-
selves with differing lithologies which can be verified by well
data.
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Figure 5. API gamma-ray values plotted against acoustic impedance.
Note the nonlinear nature of the relationship.

Analysis of this type has many inherent limitations. (1) The
results are sensitive to the number of clusters selected by the
user. Testing is necessary in order to avoid underestimating
or overestimating the number of clusters that adequately rep-
resent the data. (2) There is no guarantee that the derived clus-
ters have anything to do with the lithology or fluid fill. The
results must be calibrated to the well control. (3) There is no
guarantee that the wells have exhaustively sampled the geo-
logic space, or that the existing well control is representative
of the statistical variability of the lithology.

In this area, gamma ray logs are diagnostic of sands and
exist for each well. There is also a fairly even sampling of well
data across the field. Therefore a deterministic approach was
found that allowed us to quantitatively relate the measured
seismic attributes to the gamma ray data. A simple analysis
of the relationship of gamma ray values to acoustic imped-
ance (Figure 5) suggests that, while a general relationship
between the two is visually apparent, it is clearly a nonlinear
relationship. Further analysis of the other attributes with the
gamma ray curve produces similar results.

Anonlinear multivariate determinant analysis between the
derived multiple seismic attribute volumes and the measured
gamma ray values at wells is a problem ideally suited for
neural networks. By training a neural network with a statis-
tically representative population of the targeted log responses
and the multiple seismic attribute volumes available at each
well, a nonlinear multiattribute transform can be computed
to produce an inversion volume of the targeted log type.

Using the gamma ray, acoustic, and bulk density log curves
available over the zone of interest for the 16 wells, the proce-
dure described by both Hampson et al. (2001) and Leiphart
and Hart (2001) was employed to derive gamma ray and bulk
density inversions across the 3D volume.

Discussion of results. The resulting gamma ray inversion is
shown on the horizon slice in Figures 6a and 6b (the same
slice shown previously). The data are scaled to API gamma
units in Figure 6a and converted to porosity in Figure 6b using
the following standard linear density relationship
(Schlumberger, 1989):

Py =P+ (1-9) Py

|
1] 1000 3000

I
1] 1000 2000

meters

Figure 6. (a) Neural network inverted gamma-ray response. The horizon
slice is the same as referenced in Figure 1. Note the distinct separation of
sand from silt and shale not imaged in Figure 1. (b) Neural network
computed porosity from inverted density response. The horizon slice is the
same as referenced in Figure 1. Note the distinct separation of sand from
silt and shale not imaged in Figure 1. The density values have been
masked out for gamma ray values representative of silt or shale, giving a
relative porosity indicator for the sands.

where p;, = bulk density, ¢ = porosity, p,,, = a clean formation
of known matrix density, and p; = a fluid of average density.

From log data, the sand filled channels are interpreted as
having gamma values less than 50 API gamma units. This cut-
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Figure 7. Computed Lambda representing relative fluid incompressibility.
High values of incompressibility such as brine are blue; low incompress-
ibility, red, suggests gas.

off value was used to mask out inverted density values for
silts and shales. Analysis of Figures 6a and 6b shows three
distinct sand-bearing channels. The coherence time slice indi-
cates the boundaries of the channels clearly and the gamma
ray inversion helps in interpreting major sand bodies within
the channels.

The incompressibility coefficient A (Lambda) was deter-
mined by dividing the Lambda Rho value by the inverted bulk
density. The results are represented in Figure 7. High values
of incompressibility are thought to represent brine and are col-
ored blue. Lower (more compressible) values, green, suggest
oil and red suggest gas.

Analysis of the rigidity coefficient u (Mu) suggests that
the sands observed within the longer, north-south trending
sand body on the eastern half of the survey contain a differ-
ent rock type than the sand bodies in the western half of the
survey. These results are consistent with the observed pro-
duction from the two gas wells that penetrate the north-south
channel. The geomorphology of this north-south channel indi-
cates that it was deposited during a different depositional
cycle than were the other channels, providing an opportunity
for a different lithology to be deposited.

Conclusions. AVO inversion results for the estimation of Lamé
parameters were successfully integrated with seismic attribute
volumes derived from neural network analysis. The results
were converted to volumes of log gamma ray and bulk den-
sity. These geologically meaningful parameters contributed to
the estimation of relative sand distribution, porosity, and fluid
content estimates.

Two new drilling locations derived from this work encoun-
tered a new gas-charged reservoir, extending the life of the
gas pool and adding new reserves to the operating company’s
portfolio.
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technique” by Fatti et al. (GEOPHYSICS, 1994). “AVO and Lamé con-
stants for rock parameterization and fluid detection” by Goodway
(CSEG Recorder, 2001). “Use of multiattribute transforms to pre-
dict log properties from seismic data” by Hampson et al.
(GEorHYSICS, 2001). “Comparison of linear regression and a prob-
abilistic neural network to predict porosity from 3D seismic attrib-
utes in Lower Brushy Canyon channeled sandstones, southeast
New Mexico” by Leiphart and Hart (GEoPHYSICS, 2001). “A robust
joint inversion algorithm for rock property estimation” by Ma
(CSEG Recorder, 2001). “Extracting meaningful geologic parame-
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parameter inversions: 3D seismic case study from southern
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