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Multi-attribute seismic analysis – tackling 
non-linearity
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Later, instead of neural networks, a different mathemati-
cal approach using cubic b-splines was utilized for the same
purpose.  The results were found to be similar, suggesting
that apart from neural networks, the cubic b-splines could be
used as a tool for tackling non-linearity in multi-attribute
seismic analysis.

AVO inversion for Lamé parameters
The target area is a Lower Cretaceous glauconite filled flu-
vial channel, deposited within an incised valley system. A 3D
seismic survey was acquired in order to create a stratigraph-
ic model, consistent with all available well control and
matching the production history. The ultimate goal was to
locate undeveloped potential within the gas sands. The field
has been producing since the early 1980s and two of the ear-
liest, most prolific producers have begun to water out.

As the objective was stratigraphic in nature, the seismic
data were processed with the objective of preserving relative
amplitude relationships in the offset domain to allow for the
use of AVO attribute analysis.  

AVO inversion for Lamé parameters (λρ and µρ) has become
a common practice as it serves to enhance identification of
reservoir zones.  Also, integration of AVO-derived attribute
volumes with other non-AVO derived seismic attribute vol-
umes can provide meaningful geologic information when tied
back to well data and verified as correlating with rock proper-
ties.  Computation of reservoir properties for determination of
mathematical relationships between variables derived from
well logs, for example, is usually done with non-linear multi-
variate determinant analysis using neural networks.  This
paper provides a case study of a 3D seismic survey in southern
Alberta, Canada, where a probabilistic neural network solu-
tion was first employed on AVO attributes (Pruden, 2002,
Chopra & Pruden, 2003).  Using the gamma-ray, acoustic and
bulk density log curves over the zone of interest, gamma-ray
and bulk density inversions were derived from the 3D attrib-
ute volumes.  This methodology was successful, in that two
new drilling locations derived from this work encountered a
new gas charged reservoir, that not only extended the life of
the gas pool but added new reserves as well.
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Fig 1a Time slice from Lambda-Rho showing the
suspected gas anomaly. Low values of Lambda-
Rho are shown in blue. The red polygon encloses
all the live data points on both the time slices. The
yellow polygon encloses the suspected anomaly. 

Fig 1b Time slice from Mu-Rho showing the sus-
pected gas anomaly. High values of Mu-Rho are in
yellow and red. The red polygon encloses all the
live data points on both the time slices. The yellow
polygon encloses the suspected anomaly. 
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Lithology and pore fluid information for the target sub-
surface formations can be studied in terms of the Lambda-
Rho and Mu-Rho analysis  (Goodway, 2001) where Lambda,
Mu and Rho are the incompressibility, rigidity and density
respectively.  To do this first the P-wave and S-wave imped-
ance reflectivity responses were estimated by solving the Fatti
simplification of the Zoeppritz equations. The Vp/Vs ratio for
the data was estimated from dipole sonic log data proximal
to the area of study. Impedance reflectivities are related to
Lamé parameters of incompressibility (λ) and rigidity (µ) by
the relationships λρ = I p

2-2I s
2 and µρ = I s

2 where ρ is bulk den-
sity. The Lamé parameters cannot be directly extracted with-
out an estimation of the density parameter ρ.

Figure 1 (a) and (b) shows the Lambda-Rho and Mu-Rho
sections with the anomaly enclosed in a yellow polygon.  The
red polygon indicates all the live data points on the time slice
that are brought into the Lambda-Rho vs Mu-Rho cross-plot
space. The cross-plot for these two attributes is shown in
Fig.1 (c) where yellow dots represent the values within the
yellow polygons in figures 1 (a) and (b).  In addition to gas
sand identification, significant lithological information can
be derived from the data. 

Determination of non-linear relationships in well
log parameters
The measured well log parameters like P-velocity, S-velocity,
density, porosity and gamma ray are usually crossplotted to
examine the cluster patterns for different lithologies.
Depending on the shape of these clusters, linear or non-lin-
ear relationships can be determined for the pair of attributes
crossplotted, and then used in the transformation of seismic
attributes into desired reservoir parameters.  Sometimes, the
shapes of the clusters or the scatter of the individual points
on the crossplot make it difficult to determine a mathemati-
cal relationship in terms of its accuracy.  Examples of this are
the determination of a linear fit to an almost circular spread
of points or a non-linear fit to an irregular shaped cluster.

Given that the gamma ray logs in this area are diagnostic
of sands, gamma ray logs exist for each well and there is a
fairly even sampling of well data across the field, a determin-
istic approach was found that allowed us to quantitatively
relate the measured seismic attributes to the gamma ray data.
A simple analysis of the relationship of gamma ray values to
acoustic impedance suggested that while a general relation-
ship between the two is visually apparent, it is clearly a non-
linear relationship.  Further analysis of the other attributes
with the gamma ray curve produced similar results.  

Using neural networks
A non-linear multi-variate determinant analysis between the
derived multiple seismic attribute volumes and the measured
gamma ray values at wells is a problem that is ideally suited
for neural networks.  By training a neural network with a
statistically representative population of the targeted log
responses and the multiple seismic attribute volumes avail-
able at each well, a non-linear multi-attribute transform can
be computed to produce an inversion volume of the targeted
log type (Hampson et al, 2001, Leiphart and Hart, 2001).

Using the gamma ray, acoustic and bulk density log
curves available over the zone of interest for the 16 wells, the
neural network procedure was employed to derive gamma
ray and bulk density inversions across the 3D volume. The
resulting gamma ray inversion is shown on the horizon slice
in Figures 2 (the same slice as shown previously). The data
are scaled to API gamma units in Figure 2 and converted to
porosity in Figure 3 using the following standard linear den-
sity relationship.

ρb = φρf +(1-φ)ρma

where ρb = bulk density
φ = porosity
ρma = a clean formation of known matrix density
ρf = a fluid of average density

From log data, the sand filled channels are interpreted as
having gamma values less than 50 API gamma units.  This
cut-off value was used to mask out inverted density values
for silts and shales.  Analysis of Figures 2a and 2b shows
three distinct sand bearing channels.

Using cubic b-splines 
Spline curves (or mathematical representation of the approx-
imating curves in the form of polynomials) have been used
with a certain degree of accuracy depending on trade-offs
between drawing complexity and the generality of the curve
space that they exhibit.  Instead of letting the spline pass
through each of the cluster points, it is possible to specify
control points on the cross-plot, based on the premise that
the human eye can be relied upon to determine the desired
shape of the approximating spline.  B-splines are approxi-
mating spline curves with the advantage that the degree of
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Fig 1c Cross-plot of Lambda-Rho vs Mu-Rho. The cross-plot
shows the yellow points corresponding to low values of
Lambda-Rho and high values of Mu-Rho which is expected
of a gas anomaly. The purple polygon encloses the cluster
points corresponding to the anomaly and lights up the anom-
aly in purple on the time slices (not shown).
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polynomial is independent of the number of points and its
shape is controlled locally in that adjusting a single point
does not require total reconstruction of the curve.  Of course
the added computation complexity may be taken as a disad-
vantage.  In our computation we assume that the given data
are samples of a polynomial function of two variables with
the samples randomly distributed in the function’s domain
and there is no known connectivity between the samples.  A
set of control points is marked on the cluster and cubic b-
splines are used with a minimum of four nearest points, then
shifted by one sample at a time and finally concatenating the

multiple 4-point splines.
The choice of the splines’s control points needs to be

done carefully in that the curve through them should achieve
a faithful representation of the data.

Figure 4 depicts a cross-plot of P-impedance versus den-
sity for a well falling within a 3D seismic volume of the case
study discussed above. 

A cubic b-spline curve is seen overlayed on the cluster
passing through the control points (in red) marked as a guide
for the best fit curve.

The crossplot for P-impedance versus gamma ray for a
broad zone covering the desired sand zone shows a scatter 
of points as shown in Figure 5. While the upper (<70) values
can be seen to be representative of the sandstone, the lower
(>70 values) represent the silt and shale.  Consequently, the
control points were marked to go through the sandstone
cluster.  Similarly, a reasonable fit was obtained for P-imped-
ance versus porosity.
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Figure 2 Neural metwork inverted gamma ray response.
Note the distinct separation of sand from silt and shale.

Figure 4 Crossplot of P-impedance versus density.  Control
points for the spline function are in red.

Figure 5 Crossplot of P-impedance versus gamma ray

Figure 3 Neural network computed porosity from inverted
density response.  The density values have been masked out
for gamma ray values representative of silt or shale, giving a
relative porosity indicator for the samds.
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The determined mathematical relationships (polynomial)
for these curves was used to transform the acoustic imped-
ance inversion volume to density (Figure 6), gamma ray
(Figure 7) and porosity (Figure 8) volumes.  Time slices as ref-
erenced to Figure 1 were displayed for each of the volumes.

Notice the close similarity between the gamma ray
(Figure 7) and porosity (Figure 8) anomalous patterns corre-
sponding to the sands.  The results are encouraging especial-
ly as the mathematical relationships determined from one
well has yielded results that are similar to a neural network
approach followed earlier.

Integrating multi-attribute volumes
Application of AVO inversion to a 3D seismic volume yields
several attribute volumes that contain fluid and lithological
information.  It is quite overwhelming for a seismic inter-
preter to churn through many attribute volumes and draw
his conclusions.  The usual practice entails displaying each
attribute volume and looking for anomalous zones and con-
firm their consistency in the different volumes.  For example,
a prospective gas sand will show up low values of Lambda-
Rho, high values of Mu-Rho, low values of density, high val-
ues of porosity and a suitable range of values of gamma ray.

An automated procedure was developed wherein all the
five input volumes could be read in and a desired range of
values specified corresponding to the gas anomalies.  Figure
9 shows a time slice as referenced to Figure 1.  Notice the gas
sand distribution matches that show up on the individual
slices in Figures 2 and 3  and 6, 7 and 8.  Alternatively,
another composite volume has been generated employing a
mathematical operation that optimizes the display of the
anomalous zone e.g. an operation of the form (Lambda/Mu)
* (gamma ray/porosity) * density.  A time slice from this vol-
ume is shown in Figure 10, wherein one sees the expected
pattern for prospective gas sands.
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Figure 6 Spline curve inverted density. The time slice is refer-
enced to Figure 1.

Figure 8 Spline curve inverted porosity. The time slice is ref-
erenced to Figure 1.

Figure 7 Spline curve inverted gamma ray. The time slice is
referenced to Figure 1.
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Conclusions
1. Integration of AVO inversion in terms of Lamé parame-

ters was done with seismic attributes volumes derived
using cubic b-spline analysis on well log data.  The results
were found to be similar to an analogous integration
done using neural network analysis.

2. The derived volumes, i.e. gamma ray, density and poros-
ity contribute to the estimation of relative sand distribu-
tion and fluid content estimates.

3. A composite volume for integrating different AVO attrib-
ute volumes have been generated that show convincing
results.  Use of such volumes can save seismic interpreters
the drudgery of looking through individual attribute vol-
umes.

While the above exercise has yielded convincing results,
it needs to be mentioned that the results depend on the
choice of clusters (e.g. gamma ray) used for the determina-
tion of the mathematical relationships.  Besides, the question
of whether the given well is representative of the geological
space under consideration will need an affirmative answer.
This approach could be difficult in areas that have a signifi-
cant variability in geology in a lateral sense.
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Figure 9 Time slice from composite volume with a restricted
range of values for the individual attributes. The time slice is
referenced to Figure 1.

Figure 10 Time slice from composite volume optimizing the
anomalous zones. The time slice is referenced to Figure 1.




