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Seismic data are usually contaminated with both random 
and coherent noise, even when the data have been 

properly migrated and are multiple-free. Seismic attributes 
are particularly effective at extracting subtle features from 
relatively noise-free data. Certain types of noise can be 
addressed by the interpreter through careful structure-
oriented filtering or postmigration footprint suppression. 
However, if the data are contaminated by multiples or are 
poorly focused and imaged due to inaccurate velocities, the 
data need to go back to the processing team.

Another common problem with seismic data is their rel-
atively low bandwidth. Significant efforts are made during 
processing to enhance the frequency content of the data as 
much as possible to provide a spectral response that is con-
sistent with the acquisition parameters. Ironically, the inter-
preters can be somewhat more aggressive in their filtering. 
The interpreters will have a better understanding of the play 
concept, access to any well data, and therefore be better able 
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to keep or reject alternative filter products that are consistent 
or inconsistent with the interpretation hypothesis.

We begin our discussion by reviewing alternative means 
of suppressing random noise on our migrated seismic im-
ages, with the most promising methods being various imple-
mentations of structure-oriented filtering. Next, we address 
acquisition footprint, which may appear to be random in 
the temporal domain but is highly correlated to the acquisi-
tion geometry in the spatial domain. After running the data 
through the cleaning phase, we evaluate alternative methods 
for frequency enhancement of the input seismic data. We 
illustrate the impact of these preconditioning steps on the 
computation of the attributes such as coherence and curva-
ture on data volumes from Alberta, Canada. We conclude 
with a summary on the choice of the frequency-enhancement 
methods on the basis of the examples generated with differ-
ent workflows.

Figure 1. Vertical slice AA’ through a seismic amplitude volume (a) before and (b) after kx-ky filtering to suppress acquisition footprint. 
Time slices at t = 769 ms (c) before and (d) after kx-ky filtering. Notice the removal of the NS imprint seen in (c) on the filtered results 
in (d).
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Alternative noise-suppression workflows
Suppression of random noise: Mean, alpha-trimmed mean, 
and median filters are commonly used during processing to 
suppress random noise. A more desirable application would 
be of a dip-steered mean or median filter, which has the ef-
fect of enhancing laterally continuous events by reducing 
randomly distributed noise without suppressing details in 
the reflection events consistent with the structure. The filter 
picks up samples within the chosen aperture along the local 
dip and azimuth and replaces the amplitude of the central 
sample position with the median value of the amplitudes. 
The median filter can also be applied iteratively, reducing 
random noise at each successive iteration, but will not sig-
nificantly increase the high frequency geological component 
of the surface (Chopra and Marfurt, 2008).

Dip-steered mean filters work well on prestack data in 
which discontinuities appear as smooth diffractions, but 
smear faults and stratigraphic edges on migrated data. Dip-
steered median and alpha-trimmed mean filters work some-
what better but will still smear faults. Hoecker and Fehmers 
(2002) address this problem through an “anisotropic diffu-
sion” smoothing algorithm. The anisotropic part is so named 
because the smoothing takes place parallel to the reflector, 
while no smoothing takes place perpendicular to the reflec-
tor. The diffusion part of the name implies that the filter is 
applied iteratively, much as an interpreter would apply itera-
tive smoothing to a time-structure map. Most important, no 
smoothing takes place if a discontinuity is detected, thereby 
preserving the appearance of major faults and stratigraphic 
edges. Luo et al. (2002) proposed a competing method that 
uses a multiwindow (Kuwahara) filter to address the same 
problem. Both approaches use a mean or median filter ap-
plied to data values that fall within a spatial analysis window 
with a thickness of one sample.

Marfurt (2006) describes a multiwindow (Kuwahara) 
principal component filter that uses a small volume of data 
samples to compute the waveform that best represents the 
seismic data in the spatial analysis window. Seismic processors 

may be more familiar with the principal component filter as 
equivalent to the Kohonen-Loeve (or simply KL) filter com-
monly used to model and remove multiples on NMO-cor-
rected gathers using the multiple velocity. Examples of the ap-
plication of structure-oriented filtering on seismic data have 
been shown in Chopra and Marfurt (2007, 2008a, 2008b), 
wherein improved event focusing and reduced background 
noise levels after structure-oriented filtering are clearly evi-
dent.

Suppression of acquisition footprint: Acquisition footprint 
is defined as any amplitude or phase anomaly closely corre-
lated to the surface acquisition geometry rather than to the 
subsurface geology. Most acquisition is based on a live source-
receiver path that is repeated laterally to span the entire sur-

Figure 2. Passbands used in frequency-split structure-oriented filtering. Each band-passed seismic data volume is subjected to principal-
component structure-oriented filtering, then normalized to the amplitude of the original spectrum before reassembling the result.

Figure 3. (a) A segment of a seismic section and (b) equivalent thin-
bed reflectivity section derived from the input section. Notice the higher 
resolution as well the extra cycles that help make a more accurate 
interpretation.
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vey area, resulting in spatially periodic changes in total fold, 
azimuths, and offsets which in turn give rise to spatial period-
icity in signal-to-noise ratio, AVO response, and moveout er-
rors. Attributes exacerbate these periodic changes, giving rise 
to artifacts. Gulunay (2006) and others have shown that kx-ky 
filters can be effective in reducing acquisition footprint on 
time slices for regularly sampled surveys. Because footprint 
due to fold, offset, and azimuth tends to be organized verti-
cally, while that due to aliased migration artifacts is steeply 
dipping, kx-ky-w or 3D running-window Radon filters may 
provide some additional artifact-suppression leverage. For 
more irregular acquisition design, the noise estimated using 
kx-ky or kx-ky-w filters can be followed by an adaptive filter.

Figures 1a and 1b compare a segment of a seismic section 
before and after footprint suppression. The vertical section 
in Figure 1a exhibits the short wavelength jitter common to 
acquisition footprint, which is diminished after kx-ky filtering. 
Figures 1c and 1d show the effect seen on time slices at t=769 
ms through the two amplitude volumes. Notice the moderate 
wavelength NS imprint masking the time slice in Figure 1c 
which is suppressed after kx-ky filtering in Figure 1d.

Enhancing the spectral bandwidth of seismic data
There are a number of methods that are used during process-

ing to enhance the frequency content of the input seismic 
data. Here we mention a few commonly used processes fol-
lowed by some relatively newer ones that help the interpreter 
extract meaningful information from the seismic data.

Deconvolution: Different conventional procedures are ad-
opted to compensate for frequency attenuation. A common 
practice has been to use a two- or three-window statistical de-
convolution to correct for the dynamic loss of high frequen-
cies with increasing traveltime. This involves choosing two or 
three time windows for the deconvolution, each with its own 
parameters, keeping the time-variant nature of the embed-
ded source wavelet in mind. These windows overlap to avoid 
artifacts. However, problems can arise because the filters are 
now derived from smaller windows, which are less likely to 
meet the statistical assumptions made in constructing the de-
convolution operator, often resulting in phase distortions at 
the point of overlap.

Time-variant spectral whitening: The other method is to 
use time-variant spectral whitening (TVSW). The method 
involves passing the input data through a number of narrow 
band-pass filters and determining the decay rates for each fre-
quency band. The inverse of these decay functions for each 
frequency band is applied and the results are summed. In this 
way, the amplitude spectrum for the output data is whitened 

Figure 4. A seismic section and a time slice (1140 ms) from (a) input data volume, (b) the same data as in (a) after time-variant 
spectral whitening, and (c) the same data in (a) after thin-bed reflectivity inversion. Notice the enhancement in reflection detail on the 
vertical as well as on the time sections after TVSW and thin-bed reflectivity inversion. The amplitude spectrum shown for each data set 
indicate thin-bed reflectivity detail yielding higher frequency enhancement than TVSW.
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in a time-variant way. The number of filter bands, the width 
of each band and the overall bandwidth of application are 
the different parameters that are used and adjusted for an 
optimized result (Yilmaz 2001). In this method, the high-
frequency noise is usually amplified and so a band-pass filter 
must be applied to the resulting data. Because it is a trace-by-
trace process, TVSW is not appropriate for AVO applications.

Inverse Q-filtering: If we had an analytic form for an at-
tenuation function, it would then be easy to compensate for 
its effects. Typically a constant Q-model is assumed. In addi-
tion to compensating for absorption by boosting the ampli-
tude of the higher frequency components, an accurate inverse 
Q-filter will also compensate for the corresponding disper-
sion effects by rotating the phase components of seismic data. 
Inverse Q-filtering is most successful when combined with 
direct VSP measurements of waveform attenuation and dis-
persion. Good results can also be obtained by generating a 
suite of time-varying wavelets correlated to good well control. 

Statistical estimates of Q from surface seismic data alone have 
proven to be more challenging.

Frequency split structurally oriented filtering: Helmore 
(2009) introduced frequency split structurally oriented filter-
ing (Figure 2) wherein the input seismic data are divided into 
a number of frequency bands, followed by running structur-
ally oriented filters separately to each of the bands and then 
recombining the results. This procedure reduces noise in se-
lected frequency bands and results in higher signal-to-noise 
ratio as well as enhanced resolution. Structurally oriented fil-
ters do not suffer from windowing artifacts and are precisely 
adapted to the local dip (Helmore, 2009).

Spectral decomposition-based inversion for seismic reflectiv-
ity: Thin-bed spectral inversion (Chopra et al., 2006) is a 
process that removes the time-variant wavelet from the seis-
mic data and extracts the reflectivity to image thicknesses far 
below seismic resolution using a matching-pursuit variant 
of sparse spike inversion. In addition to enhanced images of 

Figure 5. Stratal slices from a most-positive curvature (long-wavelength) run on input seismic data; (b) most positive curvature (long-
wavelength) run on input data after footprint filtering; (c) most-positive curvature (intermediate-wavelength) run on input seismic data; (d) 
most-positive curvature (short-wavelength) run on input seismic data; and (e) most-positive curvature (short-wavelength) run on input seismic 
data after footprint filtering.
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Figure 6. Stratal slices from a coherence attribute run on (a) input seismic data, (b) input seismic data after time-
variant spectral whitening, and (c) input data transformed to filtered thin-bed reflectivity inversion. Notice the 
improved image of stratigraphic features (orange and yellow block arrows) in (b) and (c) and subtle faults (magenta 
arrows) in (c).

Figure 7. Stratal slices from coherence attribute run on the (a) input data, as well as other frequency-enhanced seismic data such as (b) after 
Q-compensation (amplitude only), (c) time-variant spectral whitening, and (d) filtered thin-bed reflectivity inversion. Note that the coherence 
shows much more detail on the filtered thin-bed reflectivity version than the others.



April 2011      The Leading Edge      265

INTERPRETER’S CORNER 

long-wavelength most-positive curvature attribute volume. 
Besides some oblique NW-SE trending lineaments that are 
geological, notice the NS imprint corresponding to the acqui-
sition footprint. The equivalent slice from the intermediate-
wavelength most-positive curvature (Figure 5b) exhibits even 
more pronounced footprint. As we go to short-wavelength 
most-positive curvature (Figure 5c), the footprint is seen even 
more pronounced such that we have low confidence in any 
lineament interpretation on this display.

In Figure 5d, we show the equivalent slice from the long-
wavelength most-positive curvature run on the seismic data 
after footprint suppression. Notice the clean-looking display 
that does not show any artifact and so is amenable for more 
accurate interpretation. In Figure 5e, we show the equivalent 
slice from the most-positive curvature (short-wavelength) at-
tribute computed on seismic data after footprint suppression.

In Figure 6, we show stratal slices through coherence vol-
umes computed from the original seismic data as well as fre-
quency-enhanced data generated using time-variant spectral 
whitening (Figure 6b) and filtered thin-bed reflectivity inver-
sion (Figure 6c). Notice the significantly increased definition 
of channel features in Figures 6b and 6c, with the lateral reso-
lution the best in Figure 6c. Due to this enhanced resolution, 
a faint acquisition imprint is also seen in Figure 6c.

Figure 7 shows stratal slices from coherence volumes run 
on (a) input data, (b) input data with inverse Q filtering, 
(c) spectrally whitened input data, and (d) input data trans-
formed to filtered thin-bed reflectivity inversion. Notice that 
the coherence slices show increased resolution in the order 
stated above, with the highest lateral resolution seen for co-

thin reservoirs, these frequency-enhanced inverse images have 
proven useful in mapping subtle onlaps and offlaps, thereby 
facilitating the mapping of parasequences and the direction 
of sediment transport. Besides viewing the spectrally broad-
ened seismic data in the form of reflectivity, it can be filtered 
back to any desired bandwidth that filter panel tests indicate, 
adding useful information for interpretational purposes.

Figure 3a compares a segment of a 5–80 Hz seismic sec-
tion from Alberta and its thin-bed reflectivity inversion (Fig-
ure 3b). Notice the increased detail in terms of extra cycles. It 
is convenient for an interpreter to convolve the derived reflec-
tivity volume with a 5–120 Hz band-pass wavelet that would 
yield a high-frequency volume. In addition to facilitating de-
tailed interpretation, these filtered volumes can serve as input 
for generating high-bandwidth attribute volumes.

In Figure 4 we show a comparison of a seismic section and 
a time slice at t = 1140 ms before and after the application 
of time-variant spectral whitening and thin-bed reflectivity 
inversion. The amplitude spectrum for each data set is also 
shown. Notice that the high-frequency volume generated 
from thin-bed reflectivity inversion serves to show the high-
est frequency enhancement.

Attribute computation on preconditioned data
Whether it be random noise or acquisition footprint, applica-
tion of one or more of the above data preconditioning meth-
ods result in attribute images that have improved vertical and 
lateral resolution and reduced contamination by artifacts, 
which we illustrate in the following examples.

Figure 5a shows a time slice at t = 1272 ms through a 

Figure 8. Stratal slices from most-positive curvature run on (a) input seismic data after time-
variant spectral whitening, and (b) input data transformed to filtered thin-bed reflectivity 
inversion. There is somewhat higher frequency on (b) as compared with (a) as the events look 
crisper. However, this difference is not as much as seen on the coherence attribute.



266      The Leading Edge      April 2011

INTERPRETER’S CORNER 

herence computed on filtered thin-bed reflectivity inversion.
In Figure 8, we depict a suite of stratal slices through 

long-wavelength most-positive curvature volumes computed 
from (a) spectrally whitened data and (b) filtered thin-bed 
reflectivity. In this case, notice that unlike the coherence im-
ages shown in Figures 6c and 7d, the lateral resolution of 
the curvature images is only slightly enhanced in Figure 8b. 
Rather than being disappointing, the similarity of the curva-
ture images confirms that broadening the spectrum does not 
significantly modify trace-to-trace relationships correlated to 
structure.

Conclusions
The motivation behind this work is to emphasize the fact 
that computation of attributes is definitely not just a process 
that involves pressing some buttons on a workstation, but re-
quires careful examination of the input seismic data in terms 
of signal-to-noise ratio or any other noise contaminating the 
data as well as frequency content.

In our analysis we have compared the results for data be-
fore and after acquisition footprint filtered as well as differ-
ent frequency enhancement of different frequency enhance-
ment techniques like Q-compensation, spectral whitening, 
frequency-split structure-oriented filtering and thin-bed re-
flectivity inversion. We find that (1) attributes run on seismic 
data that have high signal-to-noise ratio or are processed for 
acquisition footprint suppression exhibits geological features 
clearly without any masking and so amenable for more accu-
rate interpretation, and (2) that the enhancement in the fre-
quency content for the data volumes analyzed is in the order 
they have been stated above. Needless to mention, all these 
methods may not be available to an interpreter. However, this 
exercise serves to bring out the information that should be 

borne in mind while making choices for methods of frequen-
cy enhancement. 
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