
1092      The Leading Edge      September 2010

SPECIAL SECTION:  S e i s m i c  i n t e r p r e t a t i o nS e i s m i c  i n t e r p r e t a t i o n

��������	
��
��

�����
�������
������	
�
���������	�����

Volumetric attributes computed from 3D seismic data are 
powerful tools in the prediction of fractures and other 

stratigraphic features. Geologic structures often exhibit 
curvature of different wavelengths, providing different 
perspectives of the same geology. Tight (short-wavelength) 
curvature delineates details within intense, highly localized 
fracture systems. Broad (long-wavelength) curvature usually 
enhances subtle flexures on the scale of 100–200 traces 
that are difficult to see in conventional seismic, but often 
correlate to fracture zones below seismic resolution, and also 
collapse features and diagenetic alterations that result in 
broader bowls. We present a number of curvature examples 
demonstrating their interpretational value.

Introduction
Computation of volumetric curvature attributes from seis-
mic data is a significant advance in the field of attributes. 
Initial curvature applications were limited to picked 3D seis-
mic horizons. In addition to delineating faults (Sigismundi 
and Soldo, 2003) and subtle carbonate buildups (Hart and 
Sagan, 2005), horizon-based curvature has been correlated 
to open fractures measured on outcrops (Lisle, 1994) and 
to production data (Hart et al., 2002). Horizon-based cur-
vature is limited not only by the interpreter’s ability to pick 
events, but also by the existence of horizons of interest at the 
appropriate level in 3D seismic data volumes. Horizon pick-
ing can be a challenging task in data sets contaminated with 
noise and where rock interfaces do not exhibit a consistent 
impedance contrast amenable to human interpretation. To 
address this issue, Al-Dossary and Marfurt (2006) generated 
volumetric estimates of curvature from volumetric estimates 
of reflector dip and azimuth. Such reflector dip and azimuth 
estimates can be calculated using a complex trace analysis 
(Barnes, 2000), a gradient-structure tensor (Randen et al., 
2000), discrete semblance-based searches (Marfurt 2006), or 
plane-wave destructor techniques (Fomel, 2008). Comput-
ing derivatives of the volumetric reflector dip components 
provides a full 3D volume of curvature values. Many curva-
ture measures can be computed, with several workers finding 
a good correlation between dip, strike curvature (Hart et al.), 
and Gaussian curvature (Lisle, 1994) to open fractures. In 
general, curvature is an excellent measure of paleo-deforma-
tion. With an appropriate tectonic model, a good structural 
geologist can predict where fractures were formed. Since 
their formation, such fractures may have been cemented 
(Rich, 2008), filled with overlying sediments, or diageneti-
cally altered (Nissen et al., 2009). Furthermore, the present-
day direction of minimum horizontal stress may have rotat-
ed from the direction at the time of deformation, such that 
previously open fractures are now closed, while previously 
closed fractures may now be open. For this reason, predic-
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tion of open fractures requires not only images of faults and 
flexures provided by coherence and curvature coupled with 
an appropriate model of deformation, but also measures of 
present stress provided by drilling-induced fractures seen in 
image logs and velocity versus azimuth and amplitude versus 
azimuth measures computed from surface seismic data.

Many workers will prefer using maximum and minimum 
curvature (e.g., Sigismundi and Soldo), while others (includ-
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Figure 1. 2D curvature, k2D, is defined as the lateral change of the 
radius of curvature, R, along a curve, in this case, of folded volcanic 
strata seen in Perito Moreno Lake, Argentina. White arrows indicate 
normals to the yellow picked horizon. Anticlinal features have 
positive curvature and synclinal features negative curvature. Planar 
(dipping or horizontal) features have zero curvature. (Modified after 
Roberts, 2001).

Figure 2. Fractional derivatives visualized as filters applied to 
the conventional first derivative operator. The idealized derivative 
is proportional to the wavenumber, k, and inversely proportional 
to the wavelength, λ. The horizontal dotted line represents a filter 
applied to the derivative operator that would perfectly reproduce 
∂/∂x. Any numerical operator needs to go to zero at Nyquist, or λ 
=2Δx. We compensate for coarser sampling artifacts at 45° to the 
grid by tapering the derivative after λ =4Δx. The 0.80 derivative 
slightly enhances the long-wavelength components, while the 0.25 
derivative greatly enhances the long-wavelength components. The 
filters are normalized such that the area under the filtered spectrum 
(the product of the filter times the idealized first derivative) is equal 
to 1.0.
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tion of curvature of a 2D surface:

           (1)

where R is the radius of curvature and z(x) is the elevation 
of a 2D horizon (Figure 1). 2D curvature is defined as the 
change in the radius of curvature, and hence of the angle 
of the normal with the vertical, φ=tan–1(z/x). We raise two 

ing the authors) preferred the most-positive and most-neg-
ative curvatures. In this paper, we propose simply using the 
principal curvatures, k1 and k2, which we describe below. In 
addition to faults and fractures, stratigraphic features such as 
levees and bars and diagenetic features such as karst collapse 
and hydrothermally altered dolomites also appear to be well-
defined on curvature displays. Channels appear when differ-
ential compaction has taken place. 

A review of curvature definitions
Sigismondi and Soldo provide an easy-to-understand defini-

Figure 3. Vertical section through a seismic amplitude volume acquired in Alberta displayed with horizon slices through volumes of (a) 
maximum curvature, kmax, and (b) minimum curvature, kmin, (c) coherence, and (d) maximum curvature corendered with coherence (opacity 
= 50%). Many workers like using maximum curvature because they can easily visualize the correlation of upthrown and downthrown faulting 
with respect to the fault discontinuity. 
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pitfalls for those wishing to correlate Equation 1 to curva-
ture definitions found in 3D solid geometry references. First, 
geoscientists, petroleum engineers, and mining engineers are 
unique in that they point the positive z or t axis down, rather 
than up, like the rest of the world. Thus anticlinal features 
will have a positive value of 2D curvature and synclinal fea-
tures will have a negative value of 2D curvature. Second, 
most of us learned in calculus that the curvature of a func-
tion z(x) is simply

           (2)

Sigismundi and Soldo show that the peak values of Equa-
tion 2 will occur at the crest of a folded 2D image, while the 
peak values of Equation 1 will occur at the position of tightest 
curvature having a positive value.

In 3D we encounter somewhat more difficult to visualize 
formulae. We follow Roberts’ notation and assume we fit a 

Figure 4. The same vertical section shown in Figure 3, with horizon slices through (a) the most-positive curvature, kpos, (b) the most-negative 
curvature, kneg, and the two principal curvatures (c) k1, and (d) k2, defined by Equations 6 and 7. kpos and kneg are popular with many 
interpreters in that they do not suffer the abrupt discontinuities seen in kmax and kmin which can make subtle lineaments less continuous and 
mask subtle stratigraphic features. In this paper, we propose using the less commonly used principal curvatures k1 and k2. Like kpos and kneg, 
k1 and k2 show continuous images, but with the advantage that the maximum and minimum values are aligned with the tightest component 
rather than with the crest and trough of a fold or flexure. Note that k1 and k2 contain exactly the same information content as kmax and kmin 
shown in Figures 3a and b, but the information is redistributed according to Equations 8 and 9. 
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picked horizon with a quadratic surface of the form:

 z(x,y)=ax2+cxy+by2+dx+ey+f .   (3)

Roberts then goes on to define the mean curvature, kmean, 
Gaussian curvature, kGauss, and principal curvatures, k1 and k2:

 kmean=[a(1+–e2)+b(1+–d2)–cde]/(1+d2+e2)3/2,     (4)
 kGauss=(4ab–c2)/(1+d2+e2)2,       (5)
 k1= kmean + ( kmean

2– kGauss)
1/2,      (6)

 k2= kmean – ( kmean
2– kGauss)

1/2,      (7)

Note that the most-positive principal curvature, k1, is a 
signed value that is always greater than or equal to the most-
negative principal curvature, k2. However, most references 
on solid geometry (e.g., http://demonstrations.wolfram.com/
EigenvaluesCurvatureAndQuadraticForms/) define the maxi-
mum curvature as the first eigenvalue of a Hessian matrix 
equation defining the quadratic surface (e.g. Rich, 2008). 
With this definition, the maximum and minimum curva-
tures, kmax and kmin, are

         (8) 

           (9)

While these formulae are a 3D generalization of Equa-
tion 1, they cause considerable confusion for those who come 
from a geological (and not mathematical) background. First, 
the maximum curvature will not always be greater in signed 
value than the minimum curvature. If we have an elongated 
synclinal bowl, the maximum curvature will represent the 
curvature of the tightest cross section, while the minimum 
curvature will represent the curvature in the strike direction 
of our basin. For this reason, several authors (including many 
of our publications) have favored using the most-positive, kpos, 
and most-negative curvature kneg:

  kpos = (a+b)+[ (a–b)2+ c2]1/2,     (10)
  kneg = (a+b)–[ (a–b)2+ c2]1/2.    (11)

Equations 6–9 correspond to Equation 1 and Equations 
10 and 11 correspond to Equation 2. However, Rich cor-
rectly points out that these results are inferior for complex 
folding. For relatively flat dips, such as encountered in the 
Fort Worth and Permian Basins of Texas (Al-Dossary and 
Marfurt, 2006; Blumentritt et al., 2006) kpos≈k1 and kneg≈k2. 

Figure 5. An inline and a crossline from a 3D seismic data volume from Alberta. The vertical blue arrow indicates the fractured zone. 
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Figure 6. Zoom of chair displays where the vertical display is a portion of a crossline through the original 3D seismic amplitude volume while 
the horizontal displays are strat slices through (a) most-positive (long-wavelength), (b) most-negative (long-wavelength), (c) most-positive 
(short-wavelength), and (d) most-negative (short-wavelength) curvature attribute volumes. The lineament detail on the short-wavelength 
attribute displays is higher and crisper than similar lineaments on the long-wavelength displays. The fault lineaments correlate with the 
upthrown and downthrown signatures on the seismic amplitude data. Corendering coherence (75% opacity) with (e) short-wavelength most-
positive curvature and (f) short-wavelength most-negative curvature shows that the areas of high coherence correlate to planar features which 
also appear as white on the two curvature images.

However, in highly deformed areas such as the deeper Chi-
contepec Basin of Mexico (Mai et al., 2009) the differences 
can be significant. By using the principal curvatures k1 and 
k2, we maintain the accuracy for highly deformed terranes of 
kmax and kmin, while providing the interpretational simplicity 
of kpos and kneg. 

Multispectral volumetric estimation of curvature
Multispectral curvature estimates introduced by Bergbauer 
et al. (2003) and extended to volumetric calculations by Al 
Dossary and Marfurt can yield both long- and short-wave-
length curvature images, allowing an interpreter to enhance 
geologic features having different scales. Tight (short-wave-
length) curvature often delineates details within intense, 
highly localized fracture systems. Broad (long-wavelength) 
curvature often enhances subtle flexures on the scale of 100–
200 traces that are difficult to see in conventional seismic, 

but are often correlated to fracture zones that are below seis-
mic resolution. 

Al Dossary and Marfurt introduced a “fractional deriva-
tive” approach for volume computation of multispectral esti-
mates of curvature. They define the fractional derivative as 
       
         (12)

where the operator F denotes the Fourier transform, where 
u is an inline or crossline component of reflector dip, and 
where α is a fractional real number that typically ranges be-
tween 1 (giving the first derivative) and 0 (giving the Hilbert 
transform) of the dip. The nomenclature “fractional deriva-
tive” was borrowed from Cooper and Cowans (2003); how-
ever, an astute mathematician will note that i is not in the 
parentheses. In this manner we can interpret Equation 12 as 
simply a low pass filter of the form kx 

(α–1) applied to a conven-
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tional first derivative. 
The space domain operators corresponding to different 

values of α mentioned above are convolved with the previ-
ously computed dip components estimated at every sample 
and trace within the seismic volume. In addition, the direc-
tional derivative is computed using a 3D spherical rather 
than a 1D linear operator, thereby avoiding a computational 
bias associated with the acquisition axes. Lower values of α 
decrease the contribution of the high wavenumbers, thereby 
shifting the bandwidth toward longer wavelengths. Figure 2 
shows filters for values α = 0.80 and 0.25. Examining these 
spectral filters, we denote images computed with a value of 
0.80 to be “short-wavelength” and 0.25 to be “long-wave-
length” curvature results in the figures that follow.

Examples
Appearance of folds and faults. Figure 3 compares a vertical 
slice through an amplitude volume acquired in Alberta, dis-
played with horizon slices through volumetric computations 
of kmax, kmin, coherence, and kmax corendered with coherence. 
Many interpreters find that kmax provides a simple single-at-
tribute image that illuminates the structural curvature often 
associated with faulting. For horizon-based curvature, such 
curvature anomalies can be an artifact of fitting a discontin-

uous horizon (overshooting and 
undershooting) with a smooth 
quadratic surface. However, 
with the volumetric curvature 
images shown in Figure 3, we 
see that fault-associated curva-
ture anomalies exist in the seis-
mic data. These anomalies may 
be due to antithetic faulting 
(e.g., Ferrill and Morris, 2008), 
to fault drag, to diagenetic al-
teration of the gauge zone, or 
other geologic causes. These 
anomalies may also reflect limi-
tations in seismic data quality 
such as insufficient vertical reso-
lution or improper imaging due 
to errors in velocities and statics. 
Note in Figure 3d that two off-
set negative curvature grabens 
are bracketed by low-coherence 
anomalies on either side. Like-
wise, low-coherence anomalies 
bracket a horst feature that ap-
pears as a positive curvature 
anomaly. To the right of the fig-
ure, a strong positive curvature 
anomaly is laterally aligned with 
a low-coherence anomaly, which 
we interpret to be a simple flex-
ure. In some places, such as the 
east side of the southern portion 
of the graben indicated by the 

green arrow, the fault drag is so continuous that coherence 
no longer detects the fault; however, the fault trend is easily 
mapped using curvature.

Figure 4 shows corresponding horizon slices through the 
most-positive curvature, kpos, the most-negative curvature, 
kneg, and the two principal curvatures k1 and k2, defined by 
Equations 6 and 7. Note that the most-positive and most-
negative curvatures are much more continuous than the 
maximum and minimum curvatures in Figure 3. For this 
reason, many authors favor these displays when mapping 
stratigraphic features (Chopra and Marfurt, 2008) as well 
as subtle faults and fractures in the presence of gentle dip 
(e.g., Sullivan et al., 2006; Nissen et al., 2009). However, in 
areas of folding with significant dip, the crest and trough of 
a fold defined as the highest and lowest points on a vertical 
section no longer correspond to the locations of the tightest 
folding. For this reason, we recommend using the principal 
curvatures, k1 and k2. We note in Figures 4c and d that the 
positive and negative curvature anomalies are slightly shifted 
from those seen in Figures 4a and b. We also note that the 
information content of Figures 3a and 3b is simply redistrib-
uted in Figures 4c and d. In summary, k1 and k2 provide the 
simplicity of interpretation seen in kpos and kneg, but retain the 
robustness of kmax and kmin in the presence of steep dip. 

Figure 7. Time slices through the (a) long-wavelength (b) short-wavelength most-positive and most-
negative principal curvature volumes. Lineaments interpreted in black are rendered as rose diagrams 
to the right of each image.
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Figure 8. Stratal slices showing an incised channel system through (a) coherence and long-wavelength (b) k1 and (c) k2 curvature volumes, 
followed by short-wavelength (d) k1 and (e) k2 volumes. (f) Note the correlation of the channel thalweg seen on long-wavelength k2 image 
and the channel edges seen on coherence obtained by corendering the two images (50% opacity on the coherence). Point bars appear as slightly 
positive curvature anomalies.

Appearance of fractures. In Figure 5, we show an inline and 
a crossline from a 3D seismic volume from Alberta. This data 
volume was used for the study of fractures at the level indi-
cated by the blue vertical arrows. The long-wavelength most-
positive principal curvature (Figure 6a) indicates the main 
reflection trends in the form of red lineaments. Areas having 
negative values of most-positive principal curvature displayed 
as blue correspond to structural bowls. The long wavelength 
most-negative principal curvature (Figure 6b) exhibits a sim-

ilar, but laterally shifted pattern of blue lineaments. Areas 
having positive values of most-negative principal curvature 
displayed as red correspond to structural domes. The overall 
structural pattern therefore has an “egg-carton” appearance, 
which we interpret to be due to two nearly perpendicular 
sets of faults and/or folds. The short-wavelength versions of 
these displays are shown in Figures 6c and 6d, which provide 
greater detail of our dense fault and fracture network. Fig-
ures 6e and f show the short-wavelength curvature images 
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Figure 9. Zoomed image of a vertical slice through seismic amplitude and long-wavelength 
k2 curvature. Red and blue circles indicate positive and negative values of curvature seen on 
the vertical seismic section. In this case, negative curvature delineates the thalweg, or channel 
axis, while positive curvature delineates the point bar corresponding to the handle of the 
frying-pan-shaped channel anomaly seen on the vertical seismic.

Figure 10. Stratal slices showing an incised channel system through (a) coherence, (b) k1 (long-wavelength), (c) k2 (long-wavelength), (d) kmax, 
(e) kmin, (f) most-positive curvature (long-wavelength), (g) most-negative curvature (long-wavelength), (h) most-positive curvature (short-
wavelength), (i) most-negative curvature (short-wavelength), and (j) corendered coherence (50% opacity) and k2 (long-wavelength) volumes 
through an incised channels system seen on a different survey acquired in Alberta, Canada. Applying concepts of seismic stratigraphy, we 
interpret a main channel and at least three crevasse-splay features resulting in planar to slightly positive fan features (k). 

overlain by the corresponding coherence 
images rendered with the opacity set to 
75%. Note that the high-coherence por-
tions of the image appear as white rather 
than as red or blue, indicating the more 
planar features are continuous, while the 
areas of higher deformation (folding or 
faulting) are discontinuous. 

Ideally, we want to calibrate fracture 
predictions from curvature images to 
fracture or stress measures made using 
log data. One promising way is to inter-
pret the lineaments in a fractured zone 
and then transform them into a rose 
diagram. Such rose diagrams can then 
be compared with similar rose diagrams 
from image well logs to gain confidence 
in the seismic-to-well calibration. Once 
a favorable match is obtained, the inter-
pretation of fault/fracture orientations 
and the thicknesses over which they ex-
tend can be used with greater confidence 
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for more quantitative reservoir analysis. Needless to say such 
calibrations should be carried out in localized areas around 
the wells for accurate comparisons.

Figure 7 shows a simple workflow to quantify the struc-
tural fabric seen on coherence and curvature images. Win-
dowing in on a zone of interest, the interpreter simply picks 
ridges on the long-wavelength or short-wavelength most-
positive principal curvature images (or valleys on the most-
negative principal curvature images) and generates a rose 
diagram. Notice in this example the rose diagram generated 
from the short-wavelength curvature display leads to a more 
cleanly defined display showing two major axes of structural 
deformation. 

Appearance of incised channels. Figure 8 compares coher-
ence with the long-wavelength and short-wavelength versions 
of the most-positive and negative principal curvatures. No-
tice a meandering channel on the coherence display (Figure 
8a). Figures 8b and 8c show the long-wavelength most posi-
tive and most negative principal curvatures. The axis or the 
thalweg of the channel is seen  clearly on the long-wavelength 
version of the most-negative curvature. The point bars appear 
as local structural highs on the most-positive curvature. As 
expected, enhanced resolution in terms of definition of the 
channel is seen on the short-wavelength version of both the 

most-positive and most-negative principal curvatures (Fig-
ures 8d and 8e). There is an excellent correlation between 
the valley-shaped anomaly seen on the long-wavelength most 
negative principal curvature and coherence (Figure 8f).

We correlate the edges of the incised channel system seen 
on attributes using the chair display in Figure 9. Note the 
two classic frying-pan-shaped anomalies seen just above the 
picked horizon on the vertical slice through the seismic am-
plitude. Note also the negative curvature anomalies in k2 cor-
respond to the thalweg (blue circles on the vertical seismic) 
while the positive anomalies in k1 correspond to the point-
bar side of the channel (red circles on the vertical seismic).

Another comparison of coherence with the long-wave-
length and short-wavelength versions of the most-positive 
and negative principal curvature for the channel is shown 
in Figure 10. Note, in the coherence image in Figure 10a, 
that this channel appears to have several more crevasse-splays 
than the channel showed in the previous image. Again, no-
tice that the thalweg of the channel is well-defined on the 
most-negative principal curvature and the edges or the levees 
of the channel can be clearly marked on the most-positive 
curvature. In Figure 10j, we plot the coherence on the maxi-
mum curvature using an opacity value of 50%. We note that 
the channel axis and crevasse splays appear as high-coherent, 

Figure 11. Not all incised valleys result in negative curvature anomalies. In this example from Alberta, we see positive features associated with 
the channel axes indicating that the channel is filled with sand and the surrounding matrix consisting of a more easily compactable shale. (a) 
Coherence, (b) long-wavelength k1, (c) long-wavelength k2, and (d) corendered coherence (50% opacity) and long-wavelength k1 volumes.
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valley-shaped events. We interpret the relatively high coher-
ent, flat to slightly positive curvature events at the ends of the 
crevasse splays to be corresponding fans (Figure 10k). 

Differential compaction. The two previous channel im-
ages showed negative curvature anomalies associated with 
the channel axis, a feature that is consistent with differential 
compaction over a shale-filled incised valley. Not all channels 
result in negative curvature anomalies. The feature in Figure 
11 clearly appears to be a channel on the coherence image, 
but appears as a positive curvature anomaly along the chan-
nel axis. We interpret this anomaly to be due to differential 
compaction over a sand-filled channel incised in a shale ma-
trix, resulting in a local high. Such anomalies are common in 
the North Sea and other parts of the world where sufficient 
time has passed to produce differential compaction.

We also see differential compaction of sediments about 
more rigid carbonate buildups (Figure 12). In this image, we 
can recognize the mound by its circular outline on coher-
ence, low-amplitude internal reflectivity, domal shape indi-
cated by the two curvature volumes, k1 and k2, and deforma-
tion of overlying sediments due to differential compaction.

Conclusions
Volumetric curvature is a well-established interpretation-
al tool that allows us to image subtle faults, folds, incised 
channels, differential compaction, and a wide range of other 
stratigraphic features. The maximum and minimum curva-
tures define the eigenvalues of a quadratic surface. By defini-

tion (and based on eigenstructure analysis), the maximum 
curvature is defined as the principal curvature that has the 
larger absolute value. We find that the principal curvatures k1 
and k2, where k1≥k2, provide the simplicity of interpretation 
seen in kpos and kneg, but retain the robustness of kmax and kmin 
in the presence of steep dip. 

Multispectral volumetric curvature attributes are valu-
able for prediction of fracture lineaments in deformed strata. 
Several applications of volume curvature have been complet-
ed in different geological settings, which are useful for differ-
ent stratigraphic features, ranging from imaging of channel 
boundaries and small scale faults to highly fractured zones. 
Corendering volumetric curvature with coherence provides a 
particularly powerful tool. 
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