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Accurate wavelet estimation is crucial in the deconvolution 
of seismic data. As per the convolution model, the 

recorded seismic trace is the result of convolution of the 
Earth’s unknown reflectivity series with the propagating 
seismic source wavelet along with the additive noise. The 
deconvolution of the source wavelet from the recorded 
seismic traces provides useful estimates of the Earth’s 
unknown reflectivity and comes in handy as an aid to 
geological interpretation. This deconvolution process usually 
involves estimation of a wavelet, before it is removed by 
digital filtering. Because the Earth’s reflectivity and seismic 
noise are both unknown, the wavelet estimation process 
is not easy. Statistical methods estimate the wavelet using 
the statistical properties of the seismic data and are based 
on certain mathematical assumptions. The most commonly 
used method assumes that the wavelet is minimum phase 
and that the amplitude spectrum and the autocorrelation of 
the wavelet are the same as the amplitude spectrum and the 
autocorrelation of the seismic traces, within a scale factor, in 
the time zone from where the wavelet is extracted (stationary 
assumption).

With the assumption that the wavelet is minimum 
phase, an estimation of the wavelet is done from the trace 
autocorrelation. This method always estimates a minimum-
phase wavelet and so is suitable for wavelet estimates from 
seismic data acquired using explosive sources, only if their 
source signature is purely minimum phase and is retained 
during processing. However, it is not applicable for estimat-
ing wavelets from sources giving a mixed-phase signature. For 
example, deconvolution of nonminimum-phase data with a 
minimum-phase wavelet will leave a spurious phase in the 
data. The reason for this is that the autocorrelation function 
and the power spectrum mentioned above are second-order 
statistical measures. They contain no phase information and 
so cannot identify nonminimum-phase signals. Also, these 
measures work well for Gaussian probability distribution of 
amplitudes, and so will not yield accurate results for non-
Gaussian distributions.

Non-Gaussianity in the seismic data could arise from a 
nonminimum-phase source signature, noise in the data like 
swell noise, and a nonlinear Earth response. Consequently, 
higher-order statistics have been used for dealing with non-
Gaussian distributions. These statistics, known as cumulants, 
and their associated Fourier transforms known as polyspectra, 
reveal not only amplitude information, but also phase infor-
mation (Mendel, 1991). 

In this paper, we address this issue through the use of 
higher-order statistics such that the phase components in the 
data are more accurately estimated and removed.

Higher-order statistics for wavelet estimation
The cumulant, a higher-order statistical property, preserves 
the phase information of the wavelet under the assumption 
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that the reflectivity series is a non-Gaussian, stationary, and 
statistically independent random process. The second-order 
cumulant of a zero-mean process is just the autocorrelation 
which, as stated above, has no phase information. The third-
order cumulant is a two-dimensional correlation function. 
For a Gaussian process, all cumulants above the second-order 
are zero, but are nonzero for non-Gaussian processes. Thus 
these two statistics are not suitable for recovering a nonmini-
mum phase from a convolution process such as the seismic 
trace. The fourth-order cumulant is a three-dimensional cor-
relation function which contains information about phase. 
Just as the Fourier transform of the autocorrelation function 
yields the power spectrum, similarly, the trispectrum relates 
to the fourth-order cumulant via the 3D Fourier transform. 
Lazear (1993) and Velis and Ulrych (1995) estimate the phase 
of a wavelet by fourth-order cumulant matching wherein an 
initial guess for the wavelet is iteratively updated until its 
fourth-order statistics match those of the seismic data.

Misra and Sacchi (2006) suggest the parameterization 
of the embedded mixed-phase wavelet as a convolution of 

Figure 1. Workflow for the methodology developed for deconvolution 
of mixed-phase wavelets from seismic data.
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the minimum phase wavelet with an all-pass operator. The 
all-pass operator can further be parameterized as the ratio of 
a maximum-phase time sequence and corresponding mini-
mum-phase time sequence with the necessary time delay re-
quired to enforce causality in the all-pass operator (Porsani 
and Ursin, 1998). The denominator term in the parameter-
ization of the all-pass operator is a minimum-phase sequence 
whose length and coefficients are unknown. As discussed in a 
later section, we optimize for the unknown coefficients of the 
minimum-phase sequence and keep the length as a constant 
parameter.

Seismic data are represented as the convolution of the re-
flectivity sequence with the unknown wavelet. The unknown 
wavelet showing mixed-phase characteristics is further repre-
sented as the convolution of a minimum-phase wavelet and 
the all-pass operator. Thus the seismic data are represented in 
terms of two convolutions, namely convolution of reflectivity 
with the minimum-phase wavelet which in turn is convolved 
with the all-pass operator. Deconvolving the data with the 
minimum-phase wavelet increases the bandwidth of the out-
put data which we subsequently refer to as the whitened data. 
The whitened data are thus represented as the convolution 
of the underlying reflectivity series and the all-pass operator. 
Hence it is possible to make an estimation of the underlying 
reflectivity series by estimating the all-pass operator from the 
whitened data.

Development of the algorithm
The well-known Barlett-Brillinger-Rosenblatt formula (Lazear 
1993; Mendel 1991) links the fourth-order cumulant of the 
seismic trace with the fourth-order moment of the embedded 
wavelet. For non-Gaussian, statistically independent, and 
identically distributed reflectivity series, the fourth-order cu-
mulant of the seismic trace is equal to, within a scale factor, 
the fourth-order moment of the wavelet provided that the 
noise distribution is Gaussian. The optimization procedure 
described in the following paragraph minimizes the cost 
function given by the L2-norm between the fourth-order 
normalized trace cumulant and the fourth-order wavelet 
moment.

The optimization of the cost function thus involves com-
putation of the normalized fourth-order trace cumulant of 
the whitened data (data obtained after deconvolution with 
a minimum-phase wavelet) and the normalized fourth-order 
moment of the all-pass operator. In the present context, the 
shape of the cost function is unknown and may contain 
several local minima. Local optimization methods based on 
gradient computation always proceed to the minimum near-
est to the chosen initial model. Thus in the present optimi-
zation problem where the shape of the cost function is not 
known, a global optimization algorithm is a preferred choice. 
A simulated annealing algorithm with a Metropolis accep-

Figure 2. (a) A segment of a seismic section around location 1. (b) The estimated minimum-phase wavelet. (c) The estimated all-pass operator 
and (d) the estimated mixed-phase wavelet for location 1. (e) Same seismic section as (a) after mixed-phase wavelet deconvolution. Notice the 
phase-corrected section exhibits higher frequency content than the input data as expected and so exhibits much higher resolution.
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Figure 3. (a) A segment of a seismic section around location 2. (b) The estimated minimum-phase wavelet. (c) The estimated all-pass operator 
and (d) the estimated mixed-phase wavelet for location 2. (e) Same seismic section as (a) after mixed-phase wavelet deconvolution. Notice the 
phase-corrected section exhibits higher frequency content than the input data as expected and so exhibits much higher resolution.

Figure 4. (a) A segment of a seismic section around location 3. (b) The estimated minimum-phase wavelet. (c) The estimated all-pass operator 
and (d) the estimated mixed-phase wavelet for location 3. (e) Input seismic section in (a) after mixed-phase wavelet deconvolution. Notice the 
phase-corrected section exhibits higher frequency content than the input data as expected and so exhibits much higher resolution.
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Figure 5. (a) A segment of a seismic section around location 4. (b) The estimated minimum-phase wavelet. (c) The estimated all-pass operator 
and (d) the estimated mixed-phase wavelet for location 4. (e) Same seismic section as (a) after mixed-phase wavelet deconvolution. Notice the 
phase-corrected section exhibits higher frequency content than the input data as expected and so exhibits much higher resolution.

tance/rejection criterion (Misra, 2008) is adopted for the op-
timization of the cost function. The model parameters for the 
simulated annealing optimization are the coefficients of the 
minimum-phase sequence in the parameterization of the all-
pass operator. The all-pass operator for each of the generated 
models is computed by taking the ratio of the correspond-
ing maximum-phase sequence and the minimum-phase se-
quence.

Application to poststack seismic data
In order to test the stability and reliability of the algorithm, 
the method outlined above was applied to a seismic data 
volume from North America. For this volume, the data are 
further subdivided into smaller zones and for each zone a 
mixed-phase wavelet is estimated. The data in each subdivi-
sion are deconvolved using the estimated mixed-phase wave-
let. Further, an average estimated mixed-phase wavelet is 
obtained by taking the mean of the individual mixed-phase 
wavelets. The mean mixed-phase wavelet is then used to de-
convolve the data. The results are correlated with the P-wave 
log curve.

Figure 1 shows the workflow for the method outlined 
above.

Case study
The data volume picked for testing the algorithm had been 

processed using a conventional sequence. Four different loca-
tions on the poststack volume were selected for the estima-
tion of the mixed-phase wavelets in the same time interval 
(500 ms) for each. 

Figure 2a shows a segment of a seismic section around 
location 1. Figures 2b–d show the estimated minimum-phase 
wavelet, the estimated all-pass operator, and the estimated 
mixed-phase wavelet at location 1. The minimum-phase 
wavelets are estimated from the average autocorrelation of 
the seismic traces by the Wiener-Levinson algorithm. The 
estimated minimum-phase wavelet is deconvolved from the 
data which broadened the bandwidth. Figure 2e shows the 
phase-corrected data for location 1. Figures 3, 4 and 5 show 
a similar set of images for locations 2–4. Notice that, for each 
set of images, the mixed-phase-wavelet deconvolved sections 
exhibit the highest level of detail. Again, it would be advis-
able to correlate the deconvolved sections with the P-wave log 
curves to gain confidence in ascertaining if the resolved reflec-
tions correlate well and if they are authentic. Notice in Figure 
6 that the correlation of the section in Figure 6b is better than 
the one in Figure 6a.

Conclusions
Deconvolution of seismic data with a minimum-phase wave-
let effectively removes the amplitude spectrum of the wave-
let from the data. However, in situations where the mini-
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mum-phase assumption about the wavelet is not valid, the 
deconvolution leaves behind a spurious phase component. 
The method adopted in estimating and hence removing the 
spurious phase involves estimation of the coefficients of an 
all-pass operator from data that have been whitened by the 
deconvolution of the minimum-phase wavelet. The whit-
ened data are used to optimize the cost function involving 
the fourth-order normalized trace cumulant and the fourth-
order moment of the all-pass operators. The optimization 
procedure uses simulated annealing with the Metropolis ac-

Figure 6. Segment of a seismic section (a) and (b) after phase 
correction with the average mixed-phase wavelet. The red curve is the 
P-wave log. Notice the higher level of correlation of the log curve with 
the section in (b).

ceptance/rejection criterion. The estimated all-pass operator 
is subsequently convolved with the earlier estimated mini-
mum-phase wavelet to estimate the mixed-phase wavelet in 
the data. The suggested method is tested on a seismic data 
set from North America. The data set is subsequently de-
convolved with the estimated mixed-phase wavelets. Further, 
an average mixed-phase wavelet is computed from the indi-
vidual mixed-phase wavelets. The data are then deconvolved 
with the average mixed-phase wavelet and correlated with 
the P-wave log data. 
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