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Spectral decomposition and spectral balancing of seismic data

Abstract
�e interpretation of discrete stratigraphic features on seismic 

data is limited by its bandwidth and its signal-to-noise ratio. Un-
fortunately, well-resolved reflections from the top and base of subtle 
stratigraphic geologic boundaries occur only for thick features 
imaged by broadband data. Seismically thin stratigraphic features 
approaching a quarter-wavelength in thickness give rise to composite, 
or “tuned,” seismic reflections. Different spectral-decomposition 
methods provide an effective way of examining the seismic response 
of stratigraphic geologic features in terms of spectral components 
and thus help in interpretation. Phase components help with inter-
pretation of the discontinuity features as well as stratigraphic features 
such as onlap, offlap, and erosional unconformities. Applications 
of an often overlooked attribute derived during spectral decomposi-
tion, called the voice components, can be illustrated in terms of 
more accurate interpretation of the subsurface features. An “am-
plitude-friendly” method for spectral balancing enhances the fre-
quency content of the data and preserves the geologic tuning features 
and amplitudes. Spectral decomposition of seismic data that are 
spectrally balanced and interpreted in terms of voice components 
leads to more accurate definition of the features of interest.

Introduction
Spectral decomposition of seismic data helps in the analysis 

of subtle stratigraphic plays and fractured reservoirs (Partyka et 
al., 1999; Marfurt and Kirlin, 2001). Given an input seismic trace 
in time, different spectral-decomposition 
methods — including the traditional 
short-window discrete Fourier trans-
form, the continuous-wavelet trans-
form (CWT), the S-transform, and 
the matching-pursuit transform — 
compute the spectral-magnitude and 
spectral-phase components at every 
time-frequency sample. �e analysis of 
such spectral-magnitude and spectral-
phase components is equivalent to inter-
preting subsurface stratigraphic features 
at different scales (Figure 1).

�e mother wavelet chosen for CWT 
spectral decomposition, e.g., the Morlet 
wavelet, is a complex function (Sinha et 
al. 2005) (Figure 2). As a result, the spec-
tral components obtained from CWT are 
also complex. �us, when spectral de-
composition is carried out on seismic data, 
it yields the spectral magnitude and phase 
at each time-frequency sample. �e spec-
tral magnitude represents the energy that 
correlates with the trace, and the phase 
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Figure 1. Typical workflow for spectral decomposition carried out by using the continuous-
wavelet transform method. �e output includes spectral-magnitude, spectral-phase, and spec-
tral-voice component volumes.

represents the phase rotation between the seismic trace and the 
Morlet wavelet at each instant of time.

Goupillaud et al. (1984) show that the CWT process preserves 
the signal energy and is reversible. �us the signal can be recon-
structed from the CWT coefficients as a convolution along the 
scales used in the transformation plus an integration along time.

In addition to magnitude and phase, one can readily compute 
spectral voices (e.g., Marfurt and Matos, 2014) at every time-
frequency sample. In this study, we discuss the value of such 
spectral voices in subsequent attribute calculation.

Another traditional use of time-varying Fourier transforms is 
spectral balancing. Trace-by-trace time-varying spectral balancing 
improves vertical resolution but destroys relative amplitudes. We 
discuss an “amplitude-friendly” method for flattening the amplitude 
spectra of the input data and show its applications as well.

Voice components from C WT spectral decomposition
In addition to spectral and phase components, Goupillaud et 

al. (1984) introduce another component, called the voice compo-
nent, which is a simple function of spectral magnitude, m, and 
phase φ at each time-frequency sample and is given by

ν( t , f ) = m (t,  f ) exp[-j φ(t, f )].                     (1)

�e real part of the sum over all frequencies, f, of all these voice 
components reconstructs the original trace. Because the voice 
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components are band-pass-filtered versions of the original seismic 
data (Fahmy et al., 2008), the application to map subtle hydro-
carbon features can be viewed as analysis of spectral voices.

After choosing an appropriate mother wavelet (Chopra and 
Marfurt, 2015), the scaled members of the wavelet family are 
defined by simple scaling and shifting of the mother wavelet. 
Crosscorrelating the member wavelets with the original seismic 
trace generates the spectral-voice components. For the contin-
uous-wavelet transform, the voice components are equivalent to 
narrow bandpass-filtered versions of the input seismic data. We 
show the 30-Hz voice-component section in Figure 3, along 
with the magnitude spectrum of the 30-Hz wavelet.

Such voice components offer more information that subsequently 
can be processed and interpreted. In Figure 4a, we show a vertical 
slice through a 3D seismic volume from north-central Alberta, 
Canada. �e equivalent slices through the spectral magnitude, 
phase, and voice components at 65 Hz are shown in Figures 4b, 4c, 
and 4d, which highlight fault discontinuities not seen in the original 
broadband data (or in most of the lower spectral components).

Notice that the vertical-discontinuity information is not seen 
clearly on the spectral magnitude but is clear on the phase compo-
nent. �e voice component combines both attributes and nicely 

delineates the discontinuities. �is ob-
servation could be exploited to our ad-
vantage by interpreting the discontinuity 
information as such or by running dis-
continuity attributes such as coherence 
on the voice-component volume.

Since their introduction to the 3D 
interpretation community by Partyka et 
al. (1999), spectral-magnitude compo-
nents have been used routinely to delin-
eate stratigraphic features at or below 
the limits of seismic resolution. If a 
stratigraphic feature exhibits an approxi-
mately constant interval velocity, the 
tuning thickness is inversely proportional 
to the spectrally balanced peak frequency 
(e.g., Marfurt and Kirlin, 2001). More 
detailed information on seismic geo-
morphology can be gained by visual-
izing data at multiple frequencies, either 
through animation or by combining 
different spectral components using 
red-green-blue (RGB) color schemes 
(e.g., Li and Lu, 2014; Li et al., 2015).

Spectral balancing of seismic data 
in an amplitude-friendly way

�e original short-window discrete 
Fourier-transform spectral decomposi-
tion introduced by Partyka et al. (1999) 
is good for analysis but cannot be used 
to reconstruct the original seismic data. 
By using a least-squares construct, Pur-
year and Castagna (2008) modified 
this algorithm to do so. �e matching 

Figure 2. Complex wavelets used in the complex wavelet transform. 
�e (a) real and (b) imaginary (or 90° phase-rotated) wavelets are simply 
convolved, with the input seismic trace about each sample to form v(t, f) 
and vH(t, f). �e convolution with the real wavelets provides the voices, 
v(t, f), such as the 30-Hz voice shown in Figure 3. �e spectral magni-
tude is defined as m(t, f) = {[v(t, f)]2 +]vH(t, f)]2}1/2, whereas the spec-
tral phase is defined as φ(t, f) = ATAN2[vH(t, f),v(t, f)] and ranges 
between –180° and +180° (examples shown in Figure 4).

Figure 3. A vertical slice through the 30-Hz voice component after spectral decomposition 
with spectral balancing and its amplitude spectrum. Notice the frequency width on both sides 
of the amplitude maxima seen at 30 Hz. Data courtesy of Arcis Seismic Solutions, TGS.

Figure 4. Vertical slices through (a) original 3D seismic amplitude and corresponding 65-Hz (b) 
spectral-magnitude, (c) spectral-phase, and (d) spectral-voice component volumes. Notice that 
vertical discontinuities in the highlighted portion are seen poorly in the original broadband data 
and are not seen in the spectral-magnitude component but are seen clearly in the spectral-phase 
and spectral-voice components. �e voice component has the advantage that it can be interpreted 
and processed easily (e.g., using coherence), as the original seismic-amplitude data would. Data 
courtesy of Arcis Seismic Solutions, TGS.
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pursuit, S-transform, and CWT also allow one to reconstruct 
the original seismic data.

Seismic processors have long known that if the input data are 
spectrally balanced or if their frequency bandwidth is extended 
somehow, the resulting volumes could lead to higher vertical and 
lateral resolution. We discuss an amplitude-friendly spectral-balancing 
method in this study, first discussed by Marfurt and Matos (2014).

In this method, data first are decomposed into time-frequency 
spectral components. �e power of the spectral magnitude, 
P (t, f ) = m (t, f )2, is averaged over all the traces ( j = 1, … K) in the 
data volume spatially and in the given time window, which yields 

a smoothed average power spectrum, given by Pavg(t, f ). Next, the 
peak of the average power spectrum, Ppeak(t), also is computed.

Both the average spectral magnitude and the peak of the 
average power spectrum are used to design a single time-varying 
spectral-balancing operator that is applied to each and every 
trace in the data:

mj
bal(t , f )  =  

Ppeak(t)
Pavg(t , f )+εPpeak(t)
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where ε is the prewhitening parameter. 
A conservative value would be ε = 0.04. 
For larger surveys in which the esti-
mate of the average spectra is statisti-
cally more robust, one might use values 
of ε = 0.01 in many cases, further broad-
ening the spectrum. However, as with 
any filter, the interpreter needs to de-
termine whether such aggressive spec-
tral balancing introduces ringing in 
the data. Such spectral balancing is 
amplitude friendly because a single 
time-varying wavelet is applied to the 
entire data volume.

Figure 5 shows vertical slices through 
a seismic-amplitude volume before and 
after spectral balancing. �e spectra were 
computed at intervals of 5 Hz ranging 
from 5 to 120 Hz. �e balancing was 
computed using a value of ε = 0.04. �e 
individual amplitude spectra before and 
after are shown as insets.

Notice that after spectral balancing, 
the seismic section shows higher fre-
quency content, and the amplitude spec-
trum is flattened. Encouraged with the 
higher-frequency content of the data, 
we run energy-ratio coherence (Chopra 
and Marfurt, 2008) on the input data 
as well as the spectrally balanced version 
of the data. �e results are shown in 
Figures 6a and 6b, where we notice 
better definition of the north-north-
west–south-southeast faults as well as 
the faults/fractures in the east-west 
direction on the coherence run on the 
spectrally balanced version.

Finally, we run spectral decomposi-
tion on the spectrally balanced version 
of the input seismic data and put the 
voice components through to energy-
ratio coherence computation. In Figures 
6c through 6e, we show equivalent time 
slices computed from the voice-compo-
nent volumes of 65, 75, and 85 Hz. 
Notice the clarity in definition of the 

Figure 5. Vertical line through a seismic amplitude volume (a) before and (b) after spectral 
balancing. Note the small channel (yellow circle) and clear edge (green circle) and improved 
vertical resolution (cyan ellipse). Data courtesy of Arcis Seismic Solutions, TGS.

Figure 6. Time slices at 1322 ms (dotted line in Figure 4) through coherence computed from 
seismic data (a) before and (b) after spectral balancing and from the voice components at (c) 65 Hz, 
(d) 75 Hz, and (e) 85 Hz. Coherence computed from the voice components at 65, 75, and 85 Hz 
clearly shows the lineaments corresponding to faults and fractures. Data courtesy of Arcis Seismic 
Solutions, TGS.
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discontinuities on the displays. Such data lead to better interpreta-
tion of discontinuities than carrying out the same exercise of the 
input data.

Conclusions
From the foregoing examples, we conclude two things: (1) 

Voice components derived from spectral decomposition of input 
seismic data furnish detailed and crisp information at specific 
frequencies that is amenable to more accurate interpretation. (2) 
Spectral balancing of seismic data, when performed in an ampli-
tude-friendly way, leads to broader-band data, which exhibits 
detailed definition of faults and fractures. Such discontinuity 
information can be interpreted better on coherence displays in 
the zone of interest. Coherence-attribute computation performed 
on spectral voice components after spectral balancing yields higher 
detail with regard to faults and fractures or other discontinuity 
features such as channels, reefs, and so forth. 

Acknowledgments
We wish to thank Arcis Seismic Solutions, TGS, Calgary, 

Alberta, Canada, for encouraging this work and for permission 
to present these results.

Corresponding author: SChopra@arcis.com

References
Chopra, S., and Marfurt, K. J., 2008, Gleaning meaningful informa-

tion from seismic attributes: First Break, 26, no. 9, 43–53, http://
dx.doi.org/10.3997/1365-2397.2008012.

Chopra, S., and K. J. Marfurt, 2015, Choice of mother wavelets in 
CWT spectral decomposition: 83rd Annual International Meet-
ing, SEG, Expanded Abstracts, 2957–2961, http://dx.doi.
org/10.1190/segam2015-5852193.1.

Fahmy, W. A., G. Matteucci, J. Parks, M. Matheney, and J. Zhang, 
2008, Extending the limits of technology to explore below the 
DHI floor: Successful application of spectral decomposition to 
delineate DHIs previously unseen on seismic data: 78th Annual 
International Meeting, SEG, Expanded Abstracts, 408–412, 
http://dx.doi.org/10.1190/1.3054833.

Goupillaud, P., A. Grossman, and J. Morlet, 1984, Cycle-octave 
and related transforms in seismic signal analysis: Geoexploration, 
23, no. 1, 85–102, http://dx.doi.org/10.1016/0016-7142(84)
90025-5.

Li, F., and W. Lu, 2014, Coherence attribute at different spectral 
scales: Interpretation, 2, no. 1, SA99–SA106, http://dx.doi.
org/10.1190/INT-2013-0089.1.

Li, F., J. Qi, and K. Marfurt, 2015, Attribute mapping of variable-
thickness incised valley-fill systems: �e Leading Edge, 34, no. 
1, 48–52, http://dx.doi.org/10.1190/tle34010048.1.

Marfurt, K., and M. Matos, 2014, Am I blue? Finding the right 
(spectral) balance: AAPG Explorer, http://www.aapg.org/
publications/news/explorer/column/articleid/9522/am-i-blue-
finding-the-right-spectral-balance, accessed 12 March 2015.

Marfurt, K. J., and R. L. Kirlin, 2001, Narrow-band spectral analysis 
and thin-bed tuning: Geophysics, 66, no. 4, 1274–1283, http://
dx.doi.org/10.1190/1.1487075.

Partyka, G., J. Gridley, and J. Lopez, 1999, Interpretational applica-
tions of spectral decomposition in reservoir characterization: �e 
Leading Edge, 18, no. 3, 353–360, http://dx.doi.org/10.1190 
/1.1438295.

Puryear, C. I., and J. P. Castagna, 2008, Layer-thickness determina-
tion and stratigraphic interpretation using spectral inversion: 
�eory and application: Geophysics, 73, no. 2, R37–R48, http://
dx.doi.org/10.1190/1.2838274.

Sinha, S., P. S. Routh, P. D. Anno, and J. P. Castagna, 2005, Spectral 
decomposition of seismic data with continuous-wavelet transform: 
Geophysics, 70, no. 6, P19–P25, http://dx.doi.org/10.1190/1.
2127113.




