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Abstract

The application of curvature attributes on seismic horizons or 3D seismic volumes has been discussed in the
literature in several ways. Such discussion largely ignores the detail of parameter selection that must be made by
the working interpreter or the expert processor. Parameter selection such as window size and filtering methods
for seismic curvature estimates have not been extensively compared in the literature and have never been va-
lidated using quantitative ground truthing to log or drilling data. Of even greater relevance to the interpreter is
the lack of discussion of curvature parameters as they are relevant to interpretive and operational concerns. We
focus on the seismic most-positive curvature attribute, its parameterization, and filtering for the overpressured
tight sand target in the Falher F formation of the deep basin of Alberta, Canada. This sand has numerous natural
fractures that constitute an occasional drilling hazard due to mud losses. Various parameterizations on horizon-
and volume-based curvature extractions are made and examined in the context of the drilling results of four
horizontal wells, one of which has image log fracture density along the lateral portion of the well. We compared
different lateral (and vertical where applicable) window sizes in the initial curvature estimates, as well as differ-
ent postcurvature filtering approaches including unfiltered, Gaussian-filtered, and Fourier-filtered products. The
different curvature attribute estimates have been evaluated by way of map comparisons, cross-section seismic
line comparisons, and correlations with the upscaled fracture density log data. We found that our horizon-based
estimates of positive curvature suffered from mechanical artifacts related to the horizon picking process, and
the volume-based methods were generally superior. Of the volume-based methods, we found that the Fourier-
filtered curvature estimates were the most stable through smaller analysis windows. Gaussian-filtering methods
on volumetric curvature gave results of varying quality. Unfiltered volumetric curvature estimates were only
stable when very large time windows were used, which affected the time localization of the estimate. The com-
parisons give qualitative and quantitative perspective regarding the best parameters of curvature to predict the
key properties of geologic target, which in this case are the potentially hazardous natural fractures within the
overpressured Falher F sandstone.

Introduction
Curvature has long been used by geologists to pre-

dict the density of natural fractures from outcrops
(Murray, 1968). Sand box experiments show that the
correlations between curvature and strain can be sig-
nificant (Keating and Fischer, 2008), which is support-
ive of the curvature-strain-natural fracture supposition
inherent in the use of curvature to predict natural frac-
tures. This work does not include a comparison of
different curvature parameters. Hennings et al. (2000)
show a significant correlation to map-based total curva-
ture and fracture intensity asmeasured along an outcrop.
This study is significant for the use of curvature for frac-
ture prediction in general, but it is not expository for the
question of its parameterization for the same purpose in

the seismic medium. Seismic horizon-based curvature
estimates have been shown to be potentially effective in
the same manner as that of geologic map approaches.
This was followed by volumetric seismic curvature,
which has largely replaced horizon-based curvature es-
timates (Chopra and Marfurt, 2007) perhaps due to the
elimination of picking a horizon in data not well-suited to
horizon picking, or not having a pickable horizon in our
zone of interest. Chopra and Marfurt’s (2007) results are
qualitative in nature, and they do not reference drilling
results or other hard validating evidence, nor do they ex-
plore or compare different window sizes for the horizon-
based or volumetric methods of curvature estimation.
Hunt et al. (2010) find statistically significant correla-
tions between the volumetric most-positive curvature
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and the natural fracture density indicated from high-res-
olution image log data along horizontal wells. In another
study, Hunt et al. (2011) combine the curvature and
Young’s modulus to quantitatively predict natural frac-
tures as measured from high-resolution image log data
along the vertical and horizontal wells. In both Hunt et al.
(2010, 2011) papers, only one window size and filtering
technique is used for the curvature estimates. Al-Dossary
andMarfurt (2006) show the importance of Fourier filter-
ing on volumetric curvature. Their approach has gained
widespread acceptance, although they do not estimate
its advantages over other filtering methods through any
qualitative or quantitative validation techniqueswithwell
performance or log data. There are other methods for
generation and filtering of curvature attribute that are
available in our industry; however, these methods are
not compared with each other with validating informa-
tion from drilling or well-log data anywhere in the liter-
ature. The same lack of quantitative validation is true
for the curvature window size. We present here a quan-
titative and qualitative comparison of curvature param-
eterization and filtering on the prediction of natural
fractures. We use data from the drilling history of several
horizontal wells and high-resolution image log-based
fracture density data from one horizontal well to make
our evaluation objective and scientific.

The Falher F tight sandstone of the deep basin in
Alberta, Canada, is gas charged, deeply buried at ap-
proximately 3200 m true vertical depth, and overpres-
sured with gradients of approximately 14.5 KPa∕m.
The net horizontal stress in the Falher F is quite low,

which makes the drilling mud window narrow. Com-
pounding this operational challenge is the fact that the
sand has abundant natural fractures that can lead to
mud losses or gas kicks depending on the management
of the mud weight. Either the loss of too much mud or
the uncontrolled production of too much gas can lead to
catastrophic operational failure in this overpressured
system.

Case study
The Falher F target formation in the study area is

interpreted to be an incised valley fill and consists of
a series of stacked fluvial channels. These channels
are composed of very clean, quartz-rich, medium-grained
sandstones. This quartz-rich mineral composition of the
Falher F is likely to lead to high relative natural fracture
density (Nelson, 2001). Given the overpressuring and
low net horizontal stress, The Falher F formation is para-
doxically at risk for high mud losses and uncontrolled
gas releases. The prediction of natural fractures within
the reservoir is therefore operationally critical. We as-
sessed the best curvature parameterization as being the
one in which the hazard presented by the natural frac-
tures was most clearly interpreted from map and line
views, and they had the highest correlation with fracture
density as estimated in horizontal wells. We argue that
the interpretive objective, or target, should generally
be given primary consideration when choosing curvature
parameters. Our study area is depicted in Figure 1, and it
has four horizontal wells, depicted as wells 0, A, B, and
C. Well 0 and well A encountered numerous open frac-

tures, suffered uncontrolled losses of
drilling mud, and were abandoned due to
related operational concerns. Well C had
no discernible operational issues, al-
though some fracture infill material was
reported by the wellsite team. The opera-
tional failure of wells 0 and A suggests
that a high density of fractures must exist
near the end of those wellbores. Well B
has image log fracture density data,
which is displayed in Figure 1a. Figure 1b
shows a larger area around the wells
with two evaluation lines displayed in
white. Both seismic lines are depicted in
Figure 2, in which the zone of interest is
marked at the shallow level. A reason-
able but uncertain interpretation of the
events from these wells is that a trend
of high-density fractures exists in a curve
or line going from the toe of well 0, past
the high fracture density area of well B,
to the toe of well A. This feature is anti-
clinal in nature, and it can be evaluated
with estimates of most-positive curva-
ture. The lateral length of well B is just
more than 1500 m. Exact scales and the
direction of north are not given to protect
the confidentiality of the data.

Figure 1. Maps depicting the key elements of the case study. (a) A 3D perspec-
tive view of wells 0, A, B, and C. Well B has an image log estimate of fracture
density. The fracture density is displayed as rings whose size is linearly propor-
tional to density. Well 0 and well A encountered numerous open fractures, suf-
fered uncontrolled losses of drilling mud, and were abandoned due to related
operational concerns. Well C had no discernible operational issues, although
some fracture infill material was reported by the wellsite team. (b) A time struc-
ture map of the Falher F for a portion of the study area. The two seismic lines to
be used in the line analysis are shown as the white straight lines. The toe of well
A is indicated by an arrow, and it coincides with a structural feature. All seismic
data images are arbitrarily cut and rotated, with the exact scales hidden, to pro-
tect the confidential nature of the data. The same color bar is used for all images
except for Figures 13–15 (data courtesy of SEI, Canada).
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Curvature
Curvature refers to the degree of bending of a reflec-

tion surface, and it can bemeasured as the rate of change
of the curved reflection in a given direction. This would
suggest that in the simplest way, one could calculate cur-
vature by computing the first and second derivatives of
the x- and y-components of the surface. The first and sec-
ond derivatives of a curve can be approximated by cal-
culating the derivatives of a continuous function and
fitted to the given curve. The finite-difference approach
to derivative estimation approximates a curved segment
with a straight line and then differentiating the line. Sim-
ilarly, the curved segment can be approximated with
parabolas by a least-squares approach. Alternatively, the
curvature of a curved reflection at a given point can be
measured as the curvature of an osculating circle at that
point. The reciprocal of the radius of the osculating circle
defines the curvature at that point. A sharply curved re-
flection would be associated with a smaller osculating
circle (smaller radius), and thus have higher curvature,
and vice versa.

Such a simple definition of curvature has been ex-
tended to curvature computation on interpreted hori-
zons (Roberts, 2001) on a 3D seismic volume, as well as
volumetric computation of curvature as a whole (Al-
Dossary and Marfurt, 2006).

Horizon-based curvature
The surface computation of curvature involves fit-

ting a quadratic surface to the mapped horizon using
a least-squares regression and nine sample points (eight
neighbors around a given point).

A quadratic polynomial may be written as

zðx; yÞ ¼ a
∂2z
∂x2

þ b
∂2z
∂x∂y

þ c
∂2z
∂y2

þ d
∂z
∂x

þ e
∂z
∂y

þ f ; (1)

and it has six coefficients. When nine sample points are
used for the computation of curvature, it results in an
overdetermined system when the solution is sought by
the least-squares regression method. Different mea-
sures of curvature can then be written in terms of the
six coefficients, as is shown by Roberts (2001).

Volumetric computation of curvature
For extension to volumetric computation of curva-

ture, equation 1 may be written as

zðx;yÞ¼a
∂p
∂x

þb
2

�
∂p
∂y

þ∂q
∂x

�
þc

∂q
∂y

þdpþeqþf ; (2)

where p and q are the volumetric estimates of the inline
and crossline components of dip, respectively. They are
now used to approximate p ≡ ∂z∕∂x and ≡∂z∕∂y.

Per Al-Dossary and Marfurt (2006), evaluating the
polynomial equation at x ¼ 0, y ¼ 0 yields

d ¼ p;

e ¼ q;

∂2z
∂x2

¼ 2a ¼ ∂p
∂x

;

∂2z
∂x∂y

¼ b ¼ 1
2

�
∂p
∂y

þ ∂q
∂x

�
; and

∂2z
∂y2

¼ 2c ¼ ∂q
∂y

: (3)

The derivatives in the last three equations are computed
numerically so that a, b, and c can be determined. Of all
the available curvature measures, Chopra and Marfurt
(2007) recommend the most-positive curvature and
most-negative curvature attributes because they are the
easiest to understand intuitively.

Roberts (2001) has given the following expression
for computation of the most-positive curvature:

KPos ¼ ðaþ bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − bÞ2 þ c2;

q
(4)

where a, b, and c are the coefficients given in equations 1
and 2.

As we noted above, curvature is a function of the first
derivatives of the inline dip p and crossline dip q. In the
method of Fourier filtering, Al-Dossary and Marfurt
(2006) introduce a fractional index (α)-based multispec-
tral estimation of curvature. The derivative in ∂∕∂x in
the Fourier domain is equivalent to multiplying the
spectrum by (ik), but Al-Dossary and Marfurt (2006) in-
troduce a fractional index α such that the spectrum gets
multiplied by it. The smaller values of α yield the long
wavelength estimates of curvature, and the larger val-
ues yield the short wavelength. The inverse Fourier
transform allows the generation of 3D convolution op-
erator, which is convolved with p and q to obtain fil-
tered versions of ∂p∕∂x; ∂p∕∂y; ∂q∕∂x, and ∂y∕∂y. Such
estimates have their applications: the long wavelength
being suitable for obtaining the gross definitions of
the geometric features and the short wavelength for
extracting the finer details and thus more resolved
images.

As we mentioned above, the computation of curva-
ture requires estimation of the first- and second-order
derivatives. Estimation of these derivatives is done
from the seismic data using a set of samples in the spa-
tial direction for horizon-based curvature or a cuboid of
data for its volumetric computation. Once these deriv-
atives are in place, the polynomial of derivatives is
solved for different curvature measures. Usually, the
computation of derivatives or curvature measures is
carried out on preconditioned seismic data such that
the random noise in the data is minimized. Alterna-
tively, the output curvature estimates may be filtered so
as to reduce any jitter of lineament detail that is blown
up with the computations.
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The different commercial seismic data interpretation
software packages available in our industry offer varia-
tions in the computation of the polynomials in terms of
parameters in the x-, y-, and z-directions. The filtering
may be inherent in the workflow in some software
packages.

We examined the following parameter variations:

1) horizon versus volumetric estimation of curvature
2) size of the cuboid used for estimation of derivatives

(x, y in number of samples and z in ms)
3) type of filtering applied to curvature, if at all. We

specifically compare unfiltered, Gaussian filtering,
and Fourier filtering.

The estimates of the most-positive curvature were de-
rived from four separate industrially offered applications.
Qualitative comparisons were made based on the map
interpretation of curvature and the two lines described
in Figure 1. Quantitative evaluation of curvature was
made by linear regression with the upscaled fracture den-
sity from the image log of the 1500 m long lateral of
well B.

Diffraction imaging
Besides the traditional attributes such as coherence

and curvature, diffraction imaging has been promoted
as an alternative tool for mapping discontinuities corre-

sponding to faults and fracture swarms
using seismic data. Diffractions are gener-
ated as a direct seismic wavefield
response to intermediate-scale disconti-
nuities (Landa, 2012) in the subsurface.
Consequently, the amplitudes of dif-
fracted waves are smaller than those of
the reflected waves. Methods have been
developed for extraction of the diffrac-
tions from the overall seismic wavefield
and then to image them (Fomel et al.,
2007; Koren and Ravve, 2011; Klokov
and Fomel, 2012).

A diffraction imaging workflow was
applied to the same seismic data; how-
ever, it must be noted that the processing
flow for diffraction imaging differs sig-
nificantly from the processing sequence
used to produce an optimal stack for cur-
vature analysis. The diffraction imaging
workflow has much less noise attenua-
tion, particularly less FXY noise attenua-
tion. The reasons for this are the delicacy
of the diffractions, which must be pre-
served through processing. Some might
argue that the significant differences in
processing flow invalidate the compari-
son. This argument would miss the true
value of using the curvature and diffrac-
tion imaging analysis. The information
being extracted from each method is
fundamentally different; thus, different
processing flows should be expected.

Figure 3 illustrates two different hori-
zon-based curvature estimates. Figure 3a
shows Falher F level horizon-based
9 × 9 most-positive curvature, whereas
Figure 3b illustrates a 17 × 17 sized esti-
mate. In contrast, Figure 4 shows a
Falher F level horizon slice from the dif-
fraction imaging volume. This image is
very noisy, and the individual lineaments
corresponding to fractures are an inter-
pretive challenge of the most uncomfort-
able but familiar sort. The curvature
and diffraction imaging horizon slices

Figure 2. Segments of the north and south lines shown in Figure 1b from the 3D
seismic data volume. The zone of interest is marked on the sections, and so are a
couple of horizons (Spirit River and Wabamun). The equivalent segments of these
lines are displayed in the subsequent figures, from different curvature attribute
volumes generated with different algorithms and parameters (data courtesy of
SEI, Canada).

Figure 3. Horizon-based most-positive curvature computed on the Falher F sur-
face in the study area using (a) 9 × 9 and (b) 17 × 17 samples. Using a larger
number of samples in the curvature computation irons out the curvature linea-
ment detail on the displays (data courtesy of SEI, Canada).
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have similarities and differences, which are of logical
interest.

Hunt (2013) describes virtually all seismic interpre-
tation as an inductive exercise, with data from various
seismic properties forming weak evidence for an argu-
ment, or conclusion. The diffraction imaging data are an

uncomfortable exercise because its relationship to frac-
tures is not as clear, unique, or accurate as we would
like, and it is a familiar exercise because the lack of
accuracy, uniqueness, or clarity is sadly typical. We
have some reason to believe that the diffraction imaging
data could be useful for indicating fractures as well as
edges, but we are certain that interpreting the diffrac-
tion imaging data to make predictions is challenging.
The same could be said for curvature data. Both proper-
ties have challenges in their use, and we suggest that
thinking of them as “alternative” fracture predictors
is irrational: These two attributes should be considered
as complementary techniques. Hunt (2013) offers the
idea that using different independent seismic attributes
together makes rational sense as an inductive v-argu-
ment and that if all (or many) attributes make similar
predictions, then interpretive confidence is higher. This
structure from logic supports the common use we make
of multiattributes, whether it is through crossplotting,
corendering, or multivariate analysis.

The relevance of the diffraction imaging data in Fig-
ure 4 is the arcuate feature indicated by the yellow arrow,
which intersects the ends of well 0 andwell A, where cata-
strophic mud losses occurred that we attribute to open
fractures. The arcuate feature is interpreted as belonging
to a low relief fault or an open fracture swarm caused by
structural deformation (a small fold). This arcuate feature
may be compared with the curvature maps to follow, with
some prejudice being given to curvature parameteriza-
tions wherein this feature is most prominent.

Figure 4. Horizon slice from the diffraction imaging volume
for the Falher F surface. Interpretation on this slice is some-
what confusing and, so, difficult (data courtesy of SEI, Canada).

Figure 5. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
linear-weighted algorithm, and using (a) three samples in the inline and crossline directions and 98 ms as the time window, and
(b) five samples in the inline and crossline directions and 98 ms as the time window. Increasing the number of samples in the
spatial direction reduces the level of noise on the curvature displays. It might be argued that both these results are too noisy (data
courtesy of SEI, Canada).
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Results

Only a small subset of the results is shown in this
paper, although the comparison was carried out on the

vertical lines as well as horizontal displays from all of
the attribute volumes.

In Figure 3, we show a comparison of horizon-based
most-positive curvature computed on the Fahler F sur-

Figure 6. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
linear-weighted algorithm and using (a) seven samples in the inline and crossline directions and 98 ms as the time window and
(b) nine samples in the inline and crossline directions and 98 ms as the time window. Increasing the number of samples in the
spatial direction smooths out the detail on the curvature displays, and it slightly reduces the noise level. The 7 × 7 cuboid size might
be argued as the minimum stable size for unfiltered curvature estimates in this example (data courtesy of SEI, Canada).

Figure 7. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
linear-weighted algorithm and using (a) 11 samples in the inline and crossline directions and 98 ms as the time window and
(b) 17 samples in the inline and crossline directions and 98 ms as the time window. Increasing the number of samples in the
spatial direction smooths out the detail on the curvature displays (data courtesy of SEI, Canada).
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face using 9 × 9 and 17 × 17 spatial samples. The display
with 17 × 17 samples loses the fine lineament detail that
is seen on the display with 9 x 9 samples, even though
some lineament patterns show up better on the former.

In Figure 4, we show an equivalent horizon
display as shown in Figure 3, but from the diffraction
imaging volume. The diffraction imaging data are
noisy and suffer from interpretational challenges;

Figure 8. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
linear-weighted algorithm, keeping the spatial samples as fixed at 9 × 9, and using (a) 22 ms as the time window and (b) 46 ms as
the time window. Increasing the number of samples in the temporal direction smooths out the detail on the curvature displays, but
it reduces the amount of noise in the estimate. Curvature estimates from both these time windows were deemed too noisy (data
courtesy of SEI, Canada).

Figure 9. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
Gaussian-weighted algorithm using (a) 1 × 5 and (b) 2 × 9. Using higher values of the filtering parameters smooths out the detail on
the curvature displays (data courtesy of SEI, Canada).
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however, it is a useful complement to the curvature
analysis. Note the arcuate feature indicated by the yel-
low arrows, which intersects the ends of well 0 and
well A, in which catastrophic mud losses occurred,
which we attribute to open fractures. This arcuate fea-
ture may be compared with the subsequent curvature.

Going back to the horizon-based curvature maps of
Figure 3, we may be suspicious that the dominant fea-
tures on both maps (just below well A) could be pick-
related artifacts because they do not conform to the
arcuate feature interpreted from the diffraction imag-
ing volume.

Figure 10. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
Gaussian-weighted algorithm using (a) 3 × 10 and (b) 5 × 10. Using higher values of the filtering parameters smooths out the detail
on the curvature displays (data courtesy of SEI, Canada).

Figure 11. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
Fourier-filtering algorithm using an alpha value of (a) 0.2 and (b) 0.4. Using lower values of the alpha parameter smooths out the
detail on the curvature displays (data courtesy of SEI, Canada).
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Figure 2 shows the stack images of the two seismic
lines as defined in Figure 1b. The zone of interest is the
Spirit River, and it is denoted by a thin yellow horizon.
This zone is generally, but not always, pickable. There
are small-scale undulations on the Spirit River horizon.
The scale of deformation at the Falher F zone is clearly
very small; the features under discussion are subtle.

In Figures 5, 6, and 7, we show the two seismic lines
drawn from the most-positive curvature attribute vol-
ume generated using a linear-weighted algorithm, and
using 3 samples (Figure 5a), which is a noisy and unsta-
ble result, 5 samples (Figure 5b), 7 samples (Figure 6a),
9 samples (Figure 6b), 11 samples (Figure 7a), and 17
samples (Figure 7b) in the inline and crossline direc-
tions. In all these cases, the vertical window was kept
constant at 98 ms. We note that increasing the number
of samples in the spatial direction reduces noise but
smooths out the detail on the curvature displays. A
good trade-off size for stability versus resolution is in
the 7 × 7 to 11 × 11 range.

Next, we fix the spatial samples at nine samples in
the inline and crossline directions, and we use a time
window of 22 ms (Figure 8a) and 46 ms (Figure 8b).
Again, an increasing window in the temporal direction
smooths out the detail in that direction. That said, it ap-
pears that the linear-weighted result requires very long
time windows to achieve stability, which works against
time localizing structural events. From the examples
shown in Figures 5–8, we see that the minimum stable
cuboid sizes for unfiltered most-positive curvature are
quite large, and they are approximately 7 × 7 × 98 ms
in size.

We now turn to the Gaussian-weighted algorithm ap-
plication, in which the parameterization is in terms of
two parameters, the first defining a proxy for the inline
and crossline samples size, and the second number
defining the vertical number of samples. In Figures 9
and 10, we show the displays on using the parameters
as 1 × 5 (Figure 9a), 2 × 9 (Figure 9b), 3 × 10 (Figure 10a),
and 5 × 10 (Figure 10b). The use of higher values of the
parameters tends to smooth out the detail on the curva-
ture displays.

Figure 12. Segments of the north and south lines shown in Figure 1b from the most-positive curvature volume generated using a
Fourier filtering algorithm using an alpha value of (a) 0.65 and (b) 0.8. Using higher values of the alpha parameter increases the
detail, and perhaps the noise, on the curvature displays (data courtesy of SEI, Canada).

Figure 13. Horizon map display for most-positive curvature
attribute generated using the Gaussian-weighted method using
2 × 9 as the parameters, shown correlated with the fracture
density log at the location of the black arrow. Notice that the
correlation of the bigger fracture density disc with the curva-
ture lineament at that location is not as good. The curvature
data in Figures 13–15 use a different color bar than the previous
figures. The high-resolution image log fracture density log con-
tinues to be illustrated with the old color bar of Figure 1 (data
courtesy of SEI, Canada).
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Finally, we use the Fourier-filtering algorithm as de-
scribed above using an optimized choice of five samples
in the inline and crossline directions and using 22 ms
in the vertical directions. In Figures 11 and 12, we show
the line displays with values of the fractional index as
0.2 (Figure 11a), 0.4 (Figure 11b), 0.65 (Figure 12a), and
0.8 (Figure 12b). As expected as we go from lower to
higher values of the fractional index, we see more
and more resolution of the curvature detail. In contrast
to the unfiltered results, the Fourier filtered results are
stable for very small (5 × 5 × 22 ms) cuboids, which is
critical if time localization is important.

In Figure 13, we show the equivalent horizon slice
displays from the most-positive curvature attributes
generated using the Gaussian-filtering algorithm, and

use of 2 × 9 as the parameter choice. We notice that
the correlation of the bigger fracture density disc with
the curvature lineament at that location is not as good,
but the arcuate feature we expected from the diffrac-
tion imaging interpretation is present.

Similarly, in Figure 14, we show the equivalent hori-
zon slice from the most-positive curvature attributes
generated using the linear-weighted algorithm, with 9 ×
9 × 22 ms (Figure 14a), 9 × 9 × 98 ms (Figure 14b), and
11 × 11 × 98 ms (Figure 14c) as the parameters. Again,
we notice that the correlation of the fracture density
discs with the different curvature lineaments is not
as good. The arcuate feature we expected from the dif-
fraction imaging is not apparent in Figure 14a, in which

Figure 15. Horizon map display for most-positive curvature
attribute generated using the Fourier-filtering method with a
fractional index value of (a) 0.2, (b) 0.65, and (c) 0.8, shown
correlated with the fracture density log at the location of the
black arrow. Notice the good correlation of the fracture den-
sity discs with the red curvature lineament at that location,
although we also notice that with the decreasing value of al-
pha, the lineament detail gets smoothed out (data courtesy of
SEI, Canada).

Figure 14. Horizon map display for most-positive curvature
attribute generated using the linear-weighted method with
(a) 9 × 9 × 22 ms, (b) 9 × 9 × 98 ms, and (c) 11 × 11 × 98 ms,
shown correlated with the fracture density log at the location
of the black arrow. Notice that the correlation of the fracture
density discs with the red curvature lineament is not that good
(data courtesy of SEI, Canada).
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Figure 16. Quantitative comparison of results. (a) Gamma ray log, original and upscaled fracture density from image log data, and
most-positive curvature with different methods for the horizontal length of well B. (b) A results summary with a roll-up of the
correlations to fracture density as well as the qualitative line and map-based evaluations. Correlation coefficients passing the 1%
p-test for significance are colored dark yellow.
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a short time window is used. This 22 ms short time win-
dow result is qualitatively similar to the horizon-based
results of Figure 3.

In Figure 15, we show the horizon slice comparison
from the most-positive curvature attributes generated
using the Fourier-filtering algorithm, with values of
fractional index as 0.2 (Figure 15a), 0.65 (Figure 15b),
and 0.8 (Figure 15c). Each of these displays is shown
correlated with the fracture density log at the location
of the black arrow. As the values of the fractional index
increase, we see an increasing level of lineament detail
on the curvature displays. The image log fracture den-
sity as shown along the lateral of well B along with the
position of the toes of well 0 and well A are important
considerations in this figure because interpretability
was based on the expected arcuate or linear curvature
feature connecting the toes of well 0, well A and the
high fracture densities from well B.

All of the results, except for the horizon-based
one, show the expected high most-positive curvature
trend, although some details change in the complexity
of the trend. The horizon-based map of Figure 3a was
considered poor because it was dominated by pick-
based artifacts. The unfiltered 9 × 9 × 98 ms volumetric
result of Figure 14b appears quite interpretable on map
view, although smaller time windows gave poor results.
The Gaussian-filtered volumetric result is shown in Fig-
ure 13, and it is not materially dissimilar to the unfil-
tered result. The Fourier-filtered result (5 × 5 × 22 ms)
with a fractional index parameter of 0.2 is shown in Fig-
ure 15a, and it is considered excellent, especially in its
preservation of curved features.

Quantitative comparisons
Linear regression was performed between the most-

positive curvature maps and the fracture densities from
the image log along the lateral of well B. Figure 16
shows the log comparison and the correlation coeffi-
cients, and it rolls up the overall evaluation of the
parameter test. Figure 16a shows the values of curva-

ture, diffraction imaging, and fracture density in a log
format. There are 55 seismic-sized samples along the
lateral, so once the fracture density data are upscaled,
it can be correlated with all of the seismic attributes.
The entire set of correlation results is summarized in
Figure 16b. The Fourier-filtered results were the most
robust to parameterization and were stable at small cu-
boid sizes. The Gaussian-filtered results seemed decent
for all but the smallest and largest parameters tested.
The unfiltered volumetric approach required very large
time windows, which was related to the localization of
the interpretation for fractures. The horizon-based
method suffered from pick-based artifacts in most com-
parisons. We tabulate all these results in Table 1.

Conclusion
We revisited the question of curvature window size

and filtering method for the estimation of fractures, and
we found that these parameters can be of material op-
erational importance. Our work suggests that the best
parameters should not be assumed. We used a variety
of methods to evaluate which parameterizations were
best, which included quantitative and qualitative tech-
niques. Among the qualitative techniques was an appeal
to the independent edge-detecting method of diffraction
imaging. The volume-based curvature approaches
seemed better in map evaluation than the horizon-based
estimates, although the smallest xyz cuboid size of the
volumetric estimates tended to bear greater similarity
to the horizon solutions. Filtering of the curvature re-
sults was also material to the evaluation of the risk from
natural fractures, with the Fourier-based filtering show-
ing the most robustness to different parameterization.
Of the volume-based methods, the unfiltered approach
was most problematic to effective interpretation, re-
quiring bigger time windows for stability. Evaluation of
the best parameterization of curvature required the use
of objective correlations to the interpretive target as
well as more subjective map and line comparisons.
Based on the interpretation of fractures, there appeared

Table 1. Results summary.

Type of algorithm Parameter Map response Line response Correlations

Horizon based Small (9 × 9) Artifacts N.A. Significant

Big (17 × 17) Less artifacts N.A. Significant

Linear-weighted cuboid Very small xy, long time Poor Poor Insignificant

Small xy, long time Good Good Insignificant

Large xy, long time Good washed? Washed out Significant

Shorter time windows Degrades Degrades Insignificant

Gaussian-weighted cuboid Small Poor Poor Significant

Medium Good Good Significant

Fourier filtered, small xyz cuboid High spatial frequency (small) Good Good Significant

Low spatial frequency (big) Good Good Significant

Bigger time windows Relatively poor Degrades Significant
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to be a sweet spot size for the cuboid or filtering for
each of the volumetric approaches. A rational approach
to choosing the parameters for curvature requires the
consideration of the interpretive objective or target,
as “best” is inextricably bound by purpose.
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