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Some Machine Learning Applications  
in Seismic Interpretation 

“Big data” and “data analytics” are 
the buzzwords these days. The oil 
and gas industry has always had 

large volumes of data to acquire, process and 
interpret, and since the introduction of 3-D 
and 4-D seismic data acquisition, the handling 
of large quantities of data has only become 
more challenging. As our industry moved from 
large mainframe computers coupled with 
array processors to scalable multiprocessors 
for crunching large volumes of data, seismic 
software, data storage and visualization 
capabilities have been able to keep pace.  

But, in the last decade, our industry 
grappled not only with ever-larger volumes 
of data, but also with increased data 
heterogeneity. Fortunately, advancements 
in handling such large, heterogeneous, “big 
data” volumes, have come along. Recent 
developments in data analytic capabilities 
applied to other industries hold significant 
promise for those of working in the 
hydrocarbon exploration and development.

“Data analytics” refers to a special class of 
analytical tools or methods that are used to 
study complex systems, many of which are 
not amenable to traditional analysis, such as 
multivariant statistics. 

Deductive versus Inductive

To better understand traditional 
interpretation versus data analytic workflows, 
we need to distinguish two terms: “deductive” 
and “inductive” reasoning. Using logic or 
reason to form a conclusion or opinion about 

something is deductive, 
whereas using examples 
to reach a general 
conclusion about 
something is inductive. 

Interpreters 
routinely use deductive 
reasoning, analyzing the 
data using principles 
of geology, physics 
and petrophysics. 
Examples might be as simple as constructing 
synthetics to tie a well log to seismic data, 
or as complex as defining the environment 
of deposition using pattern recognition and 
modern analogues. There are two limitations 
to this approach. The first is that, try as we 
will, we may not be able to understand the 
physical reasons why one area of a survey is 
more productive, or alternatively completes 
better, than another. The second is that we 
may simply not have enough time to carefully 
correlate multiple attribute volumes using 
principles of physics and geology. 

In contrast, data analytics uses inductive 
reasoning to find patterns between 
multidimensional data volumes. Petrophysical 
analysis tells us that there is a theoretical 
basis for porosity to correlate to P-impedance 
and is an example of deductive theory-based 
reasoning. In contrast, if there is a statistically 
significant correlation between TOC and 
P-impedance for multiple wells in a specific 
play, and if we can successfully validate this 
correlation on new wells, we have an example 
of transductive (good for a limited number of 

data sets only) or inductive (good for most 
data sets) data-based reasoning. Often, we do 
not know the reason behind a good correlation 
but given significant validation, we can use it 
as a statistically valid prediction tool. In other 
cases, the correlations identify a feature that 
can be explained by an already established 
theory. In still other cases, the correlations 
allow us to formulate a hypothesis based on 
physics or geology that, with further validation, 
can lead to a new theory. 

Supervised and Unsupervised Learning

Machine learning algorithms can be broken 
into supervised and unsupervised learning 
subsets. Supervised learning is perhaps 
the easier subset to understand. Here, the 
interpreter provides training data, or “labels,” to 
the algorithm in addition to multiple seismic 
attribute volumes. Common labels include 
the names of seismic facies described 
by interpreter-constructed polygons or of 
assignment of voxels along a well bore to 
measured lithology, geomechanical behavior, 
or fracture intensity. Key to supervised learning 
is selecting attributes that differentiate the 
feature of interest from the background 
geology. 

As in cross plotting electric log properties, 
a shortcoming of supervised learning is 
that it will only search for explicitly defined 
features, such as carbonate versus dolomite 
versus shale. If there is also anhydrite in the 
system, it may be misclassified into one of the 
defined classes. Common machine learning 

techniques include: 

u Decision trees 
u multilinear feedforward neural networks 
u probabilistic neural networks 
u support vector machines

Unsupervised learning is slightly more 
difficult to understand. Here, the training 
data are a random set of voxels drawn from 
multiple attribute volumes themselves. The 
objective is to find patterns that in some 
measure represent the bulk of the data. A 
point of confusion is that most interpreters 
think of patterns as a reflectivity pattern 
seen on vertical, horizontal or horizon slices. 
These latter structural and spectral patterns 
are measured by seismic attributes. Rather, 
in unsupervised learning, the “patterns” are 
measured across multiple attribute volumes 
at a given voxel. For example, a salt dome 
might be represented by the four-dimensional 
attribute pattern of low-coherence, high 
entropy, low envelope and low reflector 
parallelism, while conformal sand/shale 
reflectors might be represented by high 
coherence, low entropy, moderate to high 
envelope and high reflector parallelism. 

Not all the tools in the data analytics 
toolbox are new. For example, principal 
component analysis, self-organizing mapping, 
fuzzy logic, support vector machines, 
neural networks, etc. have all been used 
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Figure 1: Segment of a 
section from a 3-D seismic 
volume from south-
central Alberta, Canada, 
which has two markers 
tracked on it. The strata 
grid shown overlaid was 
generated within these two 
markers and divided into 
20 proportional slices. The 
stratal displays shown in 
figures 2 and 3 are along 
slice 14 indicated with the 
yellow arrows. 

Figure 2 (left): Stratal slices from the first three principal components, and their co-rendered display using red (R), green (G) and blue (B) colors. Paleo channels of different dispositions and sizes are seen 
on the displays. Each of the first three displays exhibit somewhat different information. The RGB display puts it all together. Figure 3 (right): Stratal slices from the first three independent components, and 
their co-rendered display using red (R), green (G) and blue (B) colors. The different paleo channels seen in figure 2 are seen here again, but with somewhat different definition, which is interestingly seen more 
pronounced in the ICA-3 display. The RGB display puts all the information together, and the overall channel definition seems to be better in the ICA-RGB display.

Continued on next page u

CHOPRA



23AUGUST 2018     EXPLORER.AAPG.org

in interpretation for some 20 years, but in 
relatively focused applications, such as multi-
attribute analysis along a picked horizon, or 
multi-log analysis along a small set of wells. 
The major limitation has been the “big” part 
of our modern data. The advent of multicore 
desktops machines, graphical processor units 
and interpreter access to supercomputers 
previously limited to seismic imaging and flow 
simulation, along with advances in software 
development now allow the analysis of large 
data volumes. 

Humans Still Needed

A common misconception is that machine 
learning will replace human interpreters. 

The most common use of decision 
tree-based machine learning is a horizon 
autopickers. Autopickers have been in use 
for 20 years – yet each horizon needs to be 
examined and usually modified by a human 
interpreter. 

First-break pickers for statics corrections 
have used neural networks for at least 10 
years. Here, the human processor needs to 
quality control the results and add additional 
control (or corrections) where needed. 
The role of the interpreter will change from 
mundane picking to evaluating alternative 
hypotheses and evaluating the results. It is a 
pity that, these days, we see and hear about 
expert knowledge getting phased out by way 
of chosen or forced retirements due to the 
economic downturn from which we are still 
recovering. Can we somehow capture this 
expertise as part of a rule-based machine 
learning application? If so, data analytics 
applications on big data, where the machine 
learns from the human quality control, and 
where the interpreter poses new hypotheses, 
is the future for your industry.  

There are several ways of combining 
multiple attributes, with visualization in red-
green-blue (RGB) color space, coupled with 
transparency as one of the more powerful 
means. Unfortunately, such a color display 
is limited to three, and with transparency, 
four attributes. One of the methods 
commonly used for this purpose is principal 
component analysis, and a more recent one is 
independent component analysis.  Both these 
methods ‘churn’ the different attributes and 
yield one, two or three volumes that represent 
the maximum variation in the input attributes. 
Such analysis reduces the redundancy in the 
input attributes. We present the results of our 
investigation into the application of both these 
methods on a seismic data volume from 
central Alberta, Canada.

Machine Learning Tools

Principal component analysis is a useful 
statistical technique that has found many 
applications, including image compression 
and pattern recognition in data of high 
dimensionality. We are familiar with the usual 
statistical measures like mean, standard 
deviation and variance, which are essentially 
one-dimensional. Such measures are 
calculated one attribute at a time with the 
assumption that each attribute is independent 
of the others. In reality, many of our attributes 
are coupled through the underlying geology, 
such that a fault may give rise to lateral 
changes in waveform, dip, peak frequency 
and amplitude. Less desirably, many of our 
attributes are coupled mathematically, such 
as alternative measures of coherence or of a 
suite of closely spaced spectral components. 
The amount of attribute redundancy is 
measured by the covariance matrix. The 
first step in multi-attribute analysis is to 
subtract the mean of each attribute from 
the corresponding attribute volume. If the 
attributes have radically different units of 
measure, such as frequency measured in 
Hertz, envelope measured in millivolts, and 
coherence without dimension, a Z-score 
normalization is required. Mathematically, 

the number of linearly uncorrelated attributes 
is defined by the value of eigenvalues and 
eigenvectors of the covariance matrix. The 
first eigenvector is a linear combination that 
represents the most variability in the scaled 
attributes. The corresponding first eigenvector 
represents the amount of variability 
represented. Commonly, each eigenvalue is 
normalized by the sum of all the eigenvalues, 

giving a percentage of the variability 
represented.

By convention, the first step is to order the 
eigenvalues from the highest to the lowest. 
The eigenvector with the highest eigenvalue 
is the principal component of the data set 
(PC1); it represents the vector with maximum 
variance in the data and represents the bulk 
of the information that would be common in 

the attributes used. The eigenvector with the 
second-highest eigenvalue, called the second 
principal component, exhibits lower variance 
and is orthogonal to PC1.  PC1 and PC2 will 
lie in the plane that represents the plane of 
the data points. Similarly, the third principal 
component (PC3) will lie in a plane orthogonal 
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Invitation to Attend

Vega said attending conferences like 
Energy Opportunities helps geoscientists 
to have a more active role in the energy 
business. 

“I encourage my colleagues to explore 
beyond their technical arena to understand 
the importance of what we do, especially 
during exploration phases where we are 
looking for hydrocarbons and potentially 
changing or influencing economies in our 
region and the world. As geoscientists we 
have a lot to offer and share with other 
disciplines and organizations,” he said.

Londoño encouraged colleagues to 
take advantage of this historic moment for 
Colombia in the country’s most historic city, 
founded in 1533.

“I extend a cordial invitation to those 
interested in attending to discover our 
new country, where the combination of 
the peace process and a pro-business 
governmental agenda signal a promising 
future for the energy industry in Colombia,” 
he said.

“Attending the conference is the 
perfect excuse to visit the beautiful city 
of Cartagena, whose historic center 
and exceptional cuisine make it forever 
charming.”

For conference information, registration 
and sponsorship and exhibition information 
visit energyopportunities.info.  EX
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to the plane of the first two principal 
components. Since seismic attributes are 
correlated through the underlying geology and 
the band limitations of the source wavelet, the 
first two or three principal components will 
almost always represent the clear majority of 
the data variability.   

PCA is based on the statistical assumption 
that the input multivariate data exhibit a 
Gaussian distribution. 

Independent component analysis is an 
elegant machine learning technique that 
separates multivariate data into independent 
components, assuming that the data 
going into the analysis have non-Gaussian 
distribution. The other differences between 
ICA and PCA are that the independent 
components are not orthogonal, and 
their order is not defined, in that the first, 
second and third ICs are ordered by visual 
examination, and are not mathematically 
ordered in the process as in PCA.

Given a combination of different seismic 
attributes as input data, ICA attempts to find 
the “unmixer” in order to obtain a number 
of independent components, which is 
mathematically cast as a matrix equation, 
and solved using higher order statistics. 
We demonstrate its application to multi-
attribute seismic data, wherein the resultant 
independent components exhibit better 
resolution and separation of the geologic 
features.

Some of the seismic attributes commonly 
used for multi-attribute analysis are as follow:

u Discontinuity attributes: Coherence 
(see Geophysical Corner in the July 2018 
EXPLORER) and curvature attributes are 
commonly used for interpreting faults, 
fractures, reef edges, channel edges, etc. 
Coherence, most-positive curvature (long-
wavelength), most-negative curvature 
(long-wavelength), most-positive curvature 
(short-wavelength), most-negative curvature 
(short-wavelength), are the commonly used 
discontinuity attributes.

u GLCM texture attributes (energy, 
entropy and homogeneity): GLCM (grey-level 
co-occurrence matrix) texture attributes 
are useful for the determination of seismic 
facies analysis. GLCM energy is a measure of 
textural uniformity in an image, GLCM entropy 
is a measure of disorder or complexity of the 
image, and GLCM homogeneity is a measure 
of the overall smoothness of the image. More 

information on these attributes can be found 
in Geophysical Corner in the November 2013 
and April 2014 issues of the EXPLORER.

u Spectral decomposition frequency 
attributes (spectral magnitude components, 
peak frequency  and peak magnitude): 
Spectral decomposition refers to the 
transformation of seismic data into individual 
frequency components within the seismic 
bandwidth. The derived frequency data have 
found application for the interpretation of bed 
thickness, discontinuities and distinguishing 
fluids in the reservoirs. Spectral decomposition 
has been described extensively in the 
Geophysical Corner columns of the December 
2013, January, February, March and August 
issues of 2014, March 2015 and the May 2016 
issue.

Applications

The dataset chosen for this exercise is 
from central Alberta, Canada. We focus on 
the Mannville channels that are filled with 
interbedded units of shale and sandstone. On 
the 3-D seismic volume, these channels show 
up at the level indicated with a yellow arrow in 
figure 1. 

The input attributes used for the principal 
component and independent component 
multivariate analysis are the multispectral 
coherence, GLCM-energy, GLCM-entropy, 
GLCM-homogeneity, spectral magnitudes 
at 30, 40 and 50 Hertz, and coherent energy. 
The stratal slices at the level of the yellow 
arrow in figure 1 are shown from the PCA 
and ICA in figure 2 and 3 respectively. The 
first, second and third components from both 
the methods are depicted as well as their 
co-rendered displays using RGB. Notice the 
second, third and co-rendered displays show 
crisper definition of the paleo channels for the 
independent components than on the principal 
components.

Thus, in conclusion, we state that while the 
data reduction in principal component and 
independent component analysis is powerful, 
the latter has an edge over the former. These 
smaller number of components can then be 
used in more sophisticated machine learning 
tools such as self-organizing mapping and 
generative topographic mapping. We will 
discuss the applications of these machine 
learning tools in another article sometime.  EX
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(Editors Note: The Geophysical Corner is a 
regular column in the EXPLORER, edited by 
Satinder Chopra, chief geophysicist for TGS, 
Calgary, Canada, and a past AAPG-SEG Joint 
Distinguished Lecturer.)
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